cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A078628 Number of ways of arranging the numbers 1..n in a circle so that there is no consecutive triple i, i+1, i+2 or i, i-1, i-2 (mod n).

Original entry on oeis.org

1, 1, 0, 4, 12, 76, 494, 3662, 30574, 284398, 2918924, 32791604, 400400062, 5281683678, 74866857910, 1135063409918, 18330526475060, 314169905117860, 5695984717957246, 108921059813769710, 2190998123920252622, 46250325111346491694
Offset: 1

Views

Author

N. J. A. Sloane, Dec 12 2002

Keywords

Comments

This sequence can be related to A165964 by the use of auxiliary sequences (and the auxiliary sequences can themselves be calculated by recurrence relations). So if we desire we can determine any value of this sequence. [From Isaac Lambert, Oct 07 2009]

Examples

			a(4) = 4: 4 2 1 3, 4 3 1 2, 4 1 3 2, 4 2 3 1.
a(5) = 12: 5 3 1 2 4, 5 2 3 1 4, 5 4 2 1 3, 5 2 4 1 3, 5 1 4 2 3, 5 2 1 4 3, 5 1 3 4 2, 5 3 1 4 2, 5 4 1 3 2, 5 3 4 1 2, 5 2 4 3 1, 5 3 2 4 1.
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 14 2012

Crossrefs

Cf. A078673. See A002816, A078603 for analogous sequence with restrictions only on pairs.

Extensions

a(11)-a(13) from John W. Layman, Nov 15 2004
a(14) from Isaac Lambert, Oct 07 2009

A095816 Number of permutations of 1..n with no three elements in correct or reverse order.

Original entry on oeis.org

1, 1, 2, 4, 18, 92, 570, 4082, 33292, 304490, 3086890, 34357812, 416526730, 5463479106, 77094352076, 1164544912938, 18749754351338, 320544941916628, 5799226664694602, 110695180631374114, 2223242026407894732, 46868311165318977130, 1034758905785710599402
Offset: 0

Views

Author

Jonas Wallgren, Jun 08 2004

Keywords

Comments

Counts permutations with the property that no subsequence i(i+1)(i+2) or (i+2)(i+1)i occurs.

Crossrefs

Cf. A165963, A165964, A078628. [From Isaac Lambert, Oct 07 2009]

Programs

  • PARI
    seq(n)={my(m=3); Vec(sum(k=0, n, k!*((2*x^m-x^(m+1)-x)/(x^m-1) + O(x*x^n))^k))} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. Sum_{n>=0} n!*((2*x^m-x^(m+1)-x)/(x^m-1))^n where m = 3. - Ivana Jovovic ( ivana121(AT)EUnet.yu ), Nov 11 2007
From Vaclav Kotesovec, May 26 2023: (Start)
a(n) ~ n! * (1 - 2/n + 6/n^2 - 28/(3*n^3) - 10/(3*n^4) + 496/(15*n^5) + 1384/(45*n^6) - 79724/(315*n^7) - 259306/(315*n^8) + 3718094/(2835*n^9) + 33233992/(2025*n^10) + ...).
a(n) = (n-3)*a(n-1) + 3*(n-1)*a(n-2) + (2*n-5)*a(n-3) - (n-3)*a(n-4) - (2*n-13)*a(n-5) - (n-8)*a(n-6) + (n-6)*a(n-7).
(End)

Extensions

More terms from Ivana Jovovic (ivana121(AT)EUnet.yu), Nov 11 2007
a(0)=1 prepended by Max Alekseyev, Jun 14 2011

A165964 Number of circular permutations of length n without increasing or decreasing 3-sequences.

Original entry on oeis.org

1, 1, 0, 4, 16, 86, 542, 3932, 32330, 297438, 3028320, 33814454, 410954878, 5400878692, 76329470882, 1154445436334, 18606430004984, 318369275913710, 5764046146341198, 110091446931897180, 2212282487296335866, 46658484076867264702, 1030533208360458081232
Offset: 1

Views

Author

Isaac Lambert, Oct 07 2009

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n. Increasing 3-sequences are of the form i,i+1,i+2, while decreasing 3-sequences are of the form i,i-1,i-2.

Examples

			For n=4 the a(4)=4 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), and (0,3,1,2).
		

Crossrefs

Formula

a(n) = A095816(n-1) - 2 * Sum_{i=1..[(n+1)/3]} (A095816(n-3*i) - A095816(n-1-3*i)). [Corrected by Sean A. Irvine, Jul 07 2025]

Extensions

Edited and more terms added by Max Alekseyev, Jun 14 2011

A174077 Number of permutations of length n with no consecutive triples i,i+2,i+4 (mod n) or i,i-2,i-4 (mod n).

Original entry on oeis.org

1, 1, 2, 0, 24, 80, 504, 3794, 31616, 290970, 2973600, 33311520, 405781344, 5342413414, 75612197528, 1144942063230, 18471128518656, 316309310084728, 5730646943736936
Offset: 0

Views

Author

Isaac Lambert, Mar 10 2010

Keywords

Examples

			As an example, (0,4,1,2,3) is counted by a(5), but (0,4,1,3,2) is not because it has the progression 4,1,3.
		

Crossrefs

Extensions

Definition corrected by Isaac Lambert, Mar 15 2010
a(0)-a(4) and a(10)-a(18) from Alois P. Heinz, Apr 15 2021

A174086 Number of permutations of length n with no consecutive triples i,...i+r,...i+2r (mod n) for all r, and for all equal spacings d.

Original entry on oeis.org

16, 40, 204, 840, 6272, 35856, 378000, 2638460, 28387728, 249444936, 3275745564, 30770034480
Offset: 4

Views

Author

Isaac Lambert, Apr 20 2010

Keywords

Comments

Here we count both the sequence 1,2,3 (r=1) as a progression in 1,2,3,0,4,5, (note d=1) and in 1,0,2,4,3,5 (here, d=2).

Examples

			For n=4 note a(4) is the same as the value in A165963 since there are no other distances that can be used (i.e. only d=1).
		

Crossrefs

Extensions

a(10)-a(15) from Bert Dobbelaere, May 18 2025
Showing 1-5 of 5 results.