cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166304 Third trisection of A022998.

Original entry on oeis.org

4, 5, 16, 11, 28, 17, 40, 23, 52, 29, 64, 35, 76, 41, 88, 47, 100, 53, 112, 59, 124, 65, 136, 71, 148, 77, 160, 83, 172, 89, 184, 95, 196, 101, 208, 107, 220, 113, 232, 119, 244, 125, 256, 131, 268, 137, 280, 143, 292, 149, 304, 155, 316, 161, 328, 167, 340, 173, 352, 179
Offset: 0

Views

Author

Paul Curtz, Oct 11 2009

Keywords

Comments

The sequence read modulo 9 is the periodic sequence 4, 5, 7, 2, 1, 8 (repeat..)
The same set of numbers in a period of length 6 is in A153130,
A165355 read modulo 9, A165367 read modulo 9, and A166138 read modulo 9.

Crossrefs

Cf. A165988 (first trisection), A166138 (2nd trisection).

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {4, 5, 16, 11}, 100] (* G. C. Greubel, May 09 2016 *)

Formula

a(n) = A022998(3*n+2).
a(n) = 2*a(n-2)-a(n-4).
G.f.: (4+5*x+8*x^2+x^3)/((x-1)^2 *(1+x)^2 ).
a(2*n) = A017569(n). a(2n+1) = A016969(n) .

Extensions

Edited and extended by R. J. Mathar, Oct 14 2009

A173598 Period 6: repeat [1, 8, 7, 2, 4, 5].

Original entry on oeis.org

1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8
Offset: 0

Views

Author

Paul Curtz, Nov 23 2010

Keywords

Comments

For A141425 = 1,2,4,5,7,8 permutations, see A153130. a(n) is based on A022998. Successive differences are linked to A070366.

Crossrefs

Programs

Formula

a(n) = A166138(n) mod 9.
a(2n+1) + a(2n+2) = 9.
G.f.: (1+8*x+7*x^2+2*x^3+4*x^4+5*x^5) / ((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)). - R. J. Mathar, Mar 08 2011
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (9 - cos(n*Pi) - 6*cos(2*n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/2. (End)

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017
Showing 1-3 of 3 results.