cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A166573 Prime numbers containing the string 13.

Original entry on oeis.org

13, 113, 131, 137, 139, 313, 613, 1013, 1213, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1613, 1913, 2113, 2131, 2137, 2213, 2713, 3137, 3313, 3413, 3613, 4013, 4133, 4139, 4513, 4813, 5113, 5413, 5813, 6113, 6131, 6133, 7013, 7213, 8513
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Complement of A076805 with respect to A000040.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a166573 n = a166573_list !! (n-1)
    a166573_list = filter (("13" `isInfixOf`) . show) a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Mathematica
    p13Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 3}]]; Select[Prime[Range[1000]], p13Q] (* Vincenzo Librandi, Sep 14 2012 *)
    Select[Prime[Range[1500]], ! StringFreeQ[ToString[#], "13"] &] (* Vincenzo Librandi, May 03 2015 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,13) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 09 2011

Extensions

Corrected (313 inserted) by R. J. Mathar, Nov 30 2009

A166571 Prime numbers containing the string 10.

Original entry on oeis.org

101, 103, 107, 109, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 3109, 5101, 5107, 6101, 7103, 7109, 8101, 9103, 9109, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p10Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 0}]]; Select[Prime[Range[1250]], p10Q] (* Vincenzo Librandi, Sep 14 2012 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,10) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

Extensions

Corrected (1087 inserted) by R. J. Mathar, Nov 30 2009

A257667 Primes containing a digit 5.

Original entry on oeis.org

5, 53, 59, 151, 157, 251, 257, 353, 359, 457, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 653, 659, 751, 757, 853, 857, 859, 953, 1051, 1151, 1153, 1259, 1451, 1453, 1459, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579
Offset: 1

Views

Author

Vincenzo Librandi, May 03 2015

Keywords

Comments

Subsequence of primes of A011535. - Michel Marcus, May 03 2015
Primes in A062671. - Bruno Berselli, May 03 2015

Crossrefs

Cf. prime numbers containing the string k: A208270 (k=1), A208272 (k=2), A212525 (k=3), this sequence (k=5), A257668 (k=7), A166571 (k=10), A166572 (k=11), A243529 (k=12), A166573 (k=13), A243530 (k=14), A243531 (k=15), A243532 (k=16), A166579 (k=17), A243527 (k=111), A166580 (k=222), A166581 (k=333), A166582 (k=444).
Cf. A011535, A062671, A243531 (subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | 5 in Intseq(p)];
    
  • Mathematica
    Select[Prime[Range[250]], ! StringFreeQ[ToString[#], "5"] &]
  • PARI
    forprime(p=1, 1600, if(vecsearch(vecsort(digits(p)), 5), print1(p, ", "))) \\ Derek Orr, May 05 2015; corrected by Michel Marcus, Oct 30 2023
  • Sage
    [p for p in primes(1600) if 5 in p.digits(base=10)] # Bruno Berselli, May 03 2015
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A167292 Primes containing 999 as a substring.

Original entry on oeis.org

1999, 2999, 4999, 8999, 13999, 19991, 19993, 19997, 25999, 32999, 35999, 41999, 49991, 49993, 49999, 52999, 56999, 59999, 69991, 69997, 70999, 71999, 73999, 77999, 79997, 79999, 85999, 94999, 98999, 99901, 99907, 99923, 99929, 99961
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p999Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {9, 9, 9}]]; Select[Prime[Range[10000]], p999Q] (* Vincenzo Librandi, Sep 15 2013 *)
Showing 1-4 of 4 results.