cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A166573 Prime numbers containing the string 13.

Original entry on oeis.org

13, 113, 131, 137, 139, 313, 613, 1013, 1213, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1613, 1913, 2113, 2131, 2137, 2213, 2713, 3137, 3313, 3413, 3613, 4013, 4133, 4139, 4513, 4813, 5113, 5413, 5813, 6113, 6131, 6133, 7013, 7213, 8513
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Complement of A076805 with respect to A000040.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a166573 n = a166573_list !! (n-1)
    a166573_list = filter (("13" `isInfixOf`) . show) a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Mathematica
    p13Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 3}]]; Select[Prime[Range[1000]], p13Q] (* Vincenzo Librandi, Sep 14 2012 *)
    Select[Prime[Range[1500]], ! StringFreeQ[ToString[#], "13"] &] (* Vincenzo Librandi, May 03 2015 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,13) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 09 2011

Extensions

Corrected (313 inserted) by R. J. Mathar, Nov 30 2009

A166582 Primes containing the string 444.

Original entry on oeis.org

4441, 4447, 14447, 14449, 24443, 44417, 44449, 44453, 44483, 44491, 44497, 54443, 54449, 74441, 74449, 84443, 84449, 94441, 94447, 124447, 134443, 144407, 144409, 144413, 144427, 144439, 144451, 144461, 144479, 144481, 144497, 164443, 164447
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p444Q[n_] :=  Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {4, 4, 4}]]; Select[Prime[Range[20000]], p444Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[16000]],SequenceCount[IntegerDigits[#],{4,4,4}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 15 2018 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

Extensions

Corrected (144491 replaced by 144497) by R. J. Mathar, Nov 30 2009

A166579 Prime numbers containing the string 17.

Original entry on oeis.org

17, 173, 179, 317, 617, 1117, 1171, 1217, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 2017, 2179, 2417, 2617, 2917, 3217, 3517, 3617, 3917, 4177, 4217, 4517, 4817, 5171, 5179, 5417, 5717, 6173, 6217, 6317, 6917, 7177, 7417
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    isA166579 := proc(n) local dgs,wrks; if isprime(n) then dgs := convert(n,base,10) ; wrks := false; for i from 1 to nops(dgs)-1 do if op(i,dgs) = 7 and op(i+1,dgs) = 1 then return true; end if; od: return false; else false; end if; end proc: for n from 1 to 8000 do if isA166579(n) then printf("%d,",n) ; end if; od: # R. J. Mathar, Nov 30 2009
  • Mathematica
    p17Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 7}]]; Select[Prime[Range[1000]], p17Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[1000]],SequenceCount[IntegerDigits[#],{1,7}]>0&] (* Harvey P. Dale, Apr 18 2022 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,17) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A166581 Primes containing the string 333.

Original entry on oeis.org

2333, 3331, 5333, 7333, 10333, 13331, 13337, 13339, 16333, 17333, 19333, 20333, 23333, 23339, 29333, 31333, 33301, 33311, 33317, 33329, 33331, 33343, 33347, 33349, 33353, 33359, 33377, 33391, 38333, 41333, 43331, 49333, 50333, 55333
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p333Q[n_] :=  Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {3, 3, 3}]]; Select[Prime[Range[20000]], p333Q] (* Vincenzo Librandi Sep 14 2012 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A167282 Primes containing 777 as a substring.

Original entry on oeis.org

1777, 2777, 11777, 19777, 22777, 26777, 27773, 27779, 41777, 43777, 44777, 47777, 47779, 50777, 53777, 57773, 65777, 67777, 68777, 71777, 76777, 77711, 77713, 77719, 77723, 77731, 77743, 77747, 77761, 77773, 77783, 77797, 79777, 80777
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p777Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {7, 7, 7}]]; Select[Prime[Range[10000]], p777Q] (* Vincenzo Librandi, Sep 15 2013 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A167281 Primes containing the string 555.

Original entry on oeis.org

5557, 15551, 15559, 45553, 45557, 55501, 55511, 55529, 55541, 55547, 55579, 55589, 65551, 65557, 75553, 75557, 105557, 115553, 125551, 135559, 155501, 155509, 155521, 155537, 155539, 155557, 155569, 155579, 155581, 155593, 155599, 165551
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p555Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {5, 5, 5}]]; Select[Prime[Range[16000]], p555Q] (* Vincenzo Librandi, Sep 15 2013 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A257667 Primes containing a digit 5.

Original entry on oeis.org

5, 53, 59, 151, 157, 251, 257, 353, 359, 457, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 653, 659, 751, 757, 853, 857, 859, 953, 1051, 1151, 1153, 1259, 1451, 1453, 1459, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579
Offset: 1

Views

Author

Vincenzo Librandi, May 03 2015

Keywords

Comments

Subsequence of primes of A011535. - Michel Marcus, May 03 2015
Primes in A062671. - Bruno Berselli, May 03 2015

Crossrefs

Cf. prime numbers containing the string k: A208270 (k=1), A208272 (k=2), A212525 (k=3), this sequence (k=5), A257668 (k=7), A166571 (k=10), A166572 (k=11), A243529 (k=12), A166573 (k=13), A243530 (k=14), A243531 (k=15), A243532 (k=16), A166579 (k=17), A243527 (k=111), A166580 (k=222), A166581 (k=333), A166582 (k=444).
Cf. A011535, A062671, A243531 (subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | 5 in Intseq(p)];
    
  • Mathematica
    Select[Prime[Range[250]], ! StringFreeQ[ToString[#], "5"] &]
  • PARI
    forprime(p=1, 1600, if(vecsearch(vecsort(digits(p)), 5), print1(p, ", "))) \\ Derek Orr, May 05 2015; corrected by Michel Marcus, Oct 30 2023
  • Sage
    [p for p in primes(1600) if 5 in p.digits(base=10)] # Bruno Berselli, May 03 2015
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A166572 Prime numbers containing the string 11.

Original entry on oeis.org

11, 113, 211, 311, 811, 911, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1511, 1811, 2011, 2111, 2113, 2311, 2411, 2711, 3011, 3119, 3511, 3911, 4111, 4211, 5011, 5113, 5119, 5711, 6011, 6113, 6211, 6311, 6911, 7211, 7411
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    isA166572 := proc(n) local dgs,wrks; if isprime(n) then dgs := convert(n,base,10) ; wrks := false; for i from 1 to nops(dgs)-1 do if op(i,dgs) = 1 and op(i+1,dgs) = 1 then return true; end if; od: return false; else false; end if; end proc: for n from 1 to 8000 do if isA166572(n) then printf("%d,",n) ; end if; od: # R. J. Mathar, Nov 30 2009
  • Mathematica
    p11Q[n_]: = Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 1}]] Select[Prime[Range[1000]], p11Q] (* Vincenzo Librandi, Sep 14 2012 *)
    Select[Prime[Range[1000]],SequenceCount[IntegerDigits[#],{1,1}]>0&] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,11) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A167290 Primes containing 888 as a substring.

Original entry on oeis.org

8887, 48883, 48889, 58889, 68881, 78887, 78889, 88801, 88807, 88811, 88813, 88817, 88819, 88843, 88853, 88861, 88867, 88873, 88883, 88897, 98887, 108881, 108883, 108887, 138883, 138889, 158881, 168887, 178889, 188801, 188827, 188831, 188833
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p888Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {8, 8, 8}]]; Select[Prime[Range[20000]], p888Q] (* Vincenzo Librandi, Sep 15 2013 *)

A167292 Primes containing 999 as a substring.

Original entry on oeis.org

1999, 2999, 4999, 8999, 13999, 19991, 19993, 19997, 25999, 32999, 35999, 41999, 49991, 49993, 49999, 52999, 56999, 59999, 69991, 69997, 70999, 71999, 73999, 77999, 79997, 79999, 85999, 94999, 98999, 99901, 99907, 99923, 99929, 99961
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p999Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {9, 9, 9}]]; Select[Prime[Range[10000]], p999Q] (* Vincenzo Librandi, Sep 15 2013 *)
Showing 1-10 of 10 results.