cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A166573 Prime numbers containing the string 13.

Original entry on oeis.org

13, 113, 131, 137, 139, 313, 613, 1013, 1213, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1613, 1913, 2113, 2131, 2137, 2213, 2713, 3137, 3313, 3413, 3613, 4013, 4133, 4139, 4513, 4813, 5113, 5413, 5813, 6113, 6131, 6133, 7013, 7213, 8513
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Complement of A076805 with respect to A000040.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a166573 n = a166573_list !! (n-1)
    a166573_list = filter (("13" `isInfixOf`) . show) a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Mathematica
    p13Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 3}]]; Select[Prime[Range[1000]], p13Q] (* Vincenzo Librandi, Sep 14 2012 *)
    Select[Prime[Range[1500]], ! StringFreeQ[ToString[#], "13"] &] (* Vincenzo Librandi, May 03 2015 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,13) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 09 2011

Extensions

Corrected (313 inserted) by R. J. Mathar, Nov 30 2009

A166582 Primes containing the string 444.

Original entry on oeis.org

4441, 4447, 14447, 14449, 24443, 44417, 44449, 44453, 44483, 44491, 44497, 54443, 54449, 74441, 74449, 84443, 84449, 94441, 94447, 124447, 134443, 144407, 144409, 144413, 144427, 144439, 144451, 144461, 144479, 144481, 144497, 164443, 164447
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p444Q[n_] :=  Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {4, 4, 4}]]; Select[Prime[Range[20000]], p444Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[16000]],SequenceCount[IntegerDigits[#],{4,4,4}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 15 2018 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

Extensions

Corrected (144491 replaced by 144497) by R. J. Mathar, Nov 30 2009

A166579 Prime numbers containing the string 17.

Original entry on oeis.org

17, 173, 179, 317, 617, 1117, 1171, 1217, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 2017, 2179, 2417, 2617, 2917, 3217, 3517, 3617, 3917, 4177, 4217, 4517, 4817, 5171, 5179, 5417, 5717, 6173, 6217, 6317, 6917, 7177, 7417
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    isA166579 := proc(n) local dgs,wrks; if isprime(n) then dgs := convert(n,base,10) ; wrks := false; for i from 1 to nops(dgs)-1 do if op(i,dgs) = 7 and op(i+1,dgs) = 1 then return true; end if; od: return false; else false; end if; end proc: for n from 1 to 8000 do if isA166579(n) then printf("%d,",n) ; end if; od: # R. J. Mathar, Nov 30 2009
  • Mathematica
    p17Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 7}]]; Select[Prime[Range[1000]], p17Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[1000]],SequenceCount[IntegerDigits[#],{1,7}]>0&] (* Harvey P. Dale, Apr 18 2022 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,17) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A166571 Prime numbers containing the string 10.

Original entry on oeis.org

101, 103, 107, 109, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 3109, 5101, 5107, 6101, 7103, 7109, 8101, 9103, 9109, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p10Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 0}]]; Select[Prime[Range[1250]], p10Q] (* Vincenzo Librandi, Sep 14 2012 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,10) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

Extensions

Corrected (1087 inserted) by R. J. Mathar, Nov 30 2009

A166580 Prime numbers containing the string 222.

Original entry on oeis.org

2221, 12227, 22229, 22247, 22259, 22271, 22273, 22277, 22279, 22283, 22291, 42221, 42223, 42227, 52223, 72221, 72223, 72227, 72229, 82223, 92221, 92227, 102229, 112223, 122201, 122203, 122207, 122209, 122219, 122231, 122251, 122263, 122267, 122273, 122279, 122299, 132229, 142223
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Magma
    res := []; for n in [1..15000] do p := NthPrime(n); digits := IntegerToSequence(p); for i in [1..#digits - 2] do if digits[i..i+2] eq [2,2,2] then Append(~res, p); break; end if; end for; end for; res; // Vincenzo Librandi, Jul 16 2025
  • Mathematica
    p222Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {2, 2, 2}]]; Select[Prime[Range[15000]], p222Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[12000]],SequenceCount[IntegerDigits[#],{2,2,2}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 08 2017 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,222) \\ Charles R Greathouse IV, Jun 20 2014
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A257667 Primes containing a digit 5.

Original entry on oeis.org

5, 53, 59, 151, 157, 251, 257, 353, 359, 457, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 653, 659, 751, 757, 853, 857, 859, 953, 1051, 1151, 1153, 1259, 1451, 1453, 1459, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579
Offset: 1

Views

Author

Vincenzo Librandi, May 03 2015

Keywords

Comments

Subsequence of primes of A011535. - Michel Marcus, May 03 2015
Primes in A062671. - Bruno Berselli, May 03 2015

Crossrefs

Cf. prime numbers containing the string k: A208270 (k=1), A208272 (k=2), A212525 (k=3), this sequence (k=5), A257668 (k=7), A166571 (k=10), A166572 (k=11), A243529 (k=12), A166573 (k=13), A243530 (k=14), A243531 (k=15), A243532 (k=16), A166579 (k=17), A243527 (k=111), A166580 (k=222), A166581 (k=333), A166582 (k=444).
Cf. A011535, A062671, A243531 (subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | 5 in Intseq(p)];
    
  • Mathematica
    Select[Prime[Range[250]], ! StringFreeQ[ToString[#], "5"] &]
  • PARI
    forprime(p=1, 1600, if(vecsearch(vecsort(digits(p)), 5), print1(p, ", "))) \\ Derek Orr, May 05 2015; corrected by Michel Marcus, Oct 30 2023
  • Sage
    [p for p in primes(1600) if 5 in p.digits(base=10)] # Bruno Berselli, May 03 2015
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A166572 Prime numbers containing the string 11.

Original entry on oeis.org

11, 113, 211, 311, 811, 911, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1511, 1811, 2011, 2111, 2113, 2311, 2411, 2711, 3011, 3119, 3511, 3911, 4111, 4211, 5011, 5113, 5119, 5711, 6011, 6113, 6211, 6311, 6911, 7211, 7411
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    isA166572 := proc(n) local dgs,wrks; if isprime(n) then dgs := convert(n,base,10) ; wrks := false; for i from 1 to nops(dgs)-1 do if op(i,dgs) = 1 and op(i+1,dgs) = 1 then return true; end if; od: return false; else false; end if; end proc: for n from 1 to 8000 do if isA166572(n) then printf("%d,",n) ; end if; od: # R. J. Mathar, Nov 30 2009
  • Mathematica
    p11Q[n_]: = Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 1}]] Select[Prime[Range[1000]], p11Q] (* Vincenzo Librandi, Sep 14 2012 *)
    Select[Prime[Range[1000]],SequenceCount[IntegerDigits[#],{1,1}]>0&] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,11) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A167292 Primes containing 999 as a substring.

Original entry on oeis.org

1999, 2999, 4999, 8999, 13999, 19991, 19993, 19997, 25999, 32999, 35999, 41999, 49991, 49993, 49999, 52999, 56999, 59999, 69991, 69997, 70999, 71999, 73999, 77999, 79997, 79999, 85999, 94999, 98999, 99901, 99907, 99923, 99929, 99961
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    p999Q[n_] := Module[{idn=IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {9, 9, 9}]]; Select[Prime[Range[10000]], p999Q] (* Vincenzo Librandi, Sep 15 2013 *)

A243527 Prime numbers containing the string 111.

Original entry on oeis.org

1117, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 16111, 22111, 25111, 26111, 28111, 35111, 40111, 41113, 41117, 44111, 47111, 50111, 58111, 65111, 68111, 70111, 71119, 79111, 80111
Offset: 1

Views

Author

Vincenzo Librandi, Jun 06 2014

Keywords

Crossrefs

Cf. prime numbers containing the string kkk: this sequence (k=1), A166580 (k=2), A166581 (k=3), A166582 (k=4), A167281 (k=5), A131645 (k=6), A167282 (k=7), A167290 (k=8), A167292 (k=9).

Programs

  • Mathematica
    Select[Prime[Range[90000]], !StringFreeQ[ToString[#], "111"]&]
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,111) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A386247 Primes containing 000 as a substring.

Original entry on oeis.org

10007, 10009, 40009, 70001, 70003, 70009, 90001, 90007, 100003, 100019, 100043, 100049, 100057, 100069, 130003, 140009, 150001, 160001, 160009, 170003, 180001, 180007, 200003, 200009, 200017, 200023, 200029, 200033, 200041, 200063, 200087, 220009, 230003, 240007
Offset: 1

Views

Author

Alois P. Heinz, Jul 16 2025

Keywords

Comments

Differs from A164968 first at n=10: a(10) = 100019 < 200003 = A164968(10).

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1230, 25000]], StringContainsQ[IntegerString[#], "000"] &] (* Paolo Xausa, Jul 19 2025 *)
Showing 1-10 of 10 results.