Original entry on oeis.org
1, 2, 2, 3, 3, 5, 5, 10, 10, 24, 24, 66, 66, 198, 198, 627, 627, 2057, 2057, 6919, 6919, 23715, 23715, 82501, 82501, 290513, 290513, 1033413, 1033413, 3707853, 3707853, 13402698, 13402698, 48760368, 48760368, 178405158, 178405158, 656043858
Offset: 0
-
CoefficientList[Series[(1+2*x-Sqrt[1-4*x^2])/(2*x*(1-x)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
A168051
Expansion of (1+x+sqrt(1-2x-3x^2))/2.
Original entry on oeis.org
1, 0, -1, -1, -2, -4, -9, -21, -51, -127, -323, -835, -2188, -5798, -15511, -41835, -113634, -310572, -853467, -2356779, -6536382, -18199284, -50852019, -142547559, -400763223, -1129760415, -3192727797, -9043402501, -25669818476
Offset: 0
G.f. = 1 - x^2 - x^3 - 2*x^4 - 4*x^5 - 9*x^6 - 21*x^7 - 51*x^8 - 127*x^9 + ...
-
a[ n_] := SeriesCoefficient[ (1 + x + Sqrt[1 - 2 x - 3 x^2]) / 2, {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
-
{a(n) = polcoeff( (1 + x + sqrt(1 - 2*x - 3*x^2 + x * O(x^n))) / 2, n)}; /* Michael Somos, Jan 25 2014 */
A372013
G.f. A(x) satisfies A(x) = 1/( 1 + x*(1 - 9*x*A(x))^(1/3) ).
Original entry on oeis.org
1, -1, 4, -1, 46, 149, 1351, 8441, 63499, 462752, 3514807, 26923478, 209566927, 1647633779, 13079663527, 104649229988, 843120766711, 6833665175513, 55683581174641, 455878084448132, 3748025535972448, 30931714278955736, 256150668109462507
Offset: 0
-
a(n) = (-1)^n*sum(k=0, n, 9^(n-k)*binomial(n, k)*binomial(k/3, n-k)/(n-k+1));
A372012
G.f. A(x) satisfies A(x) = 1/( 1 + x*(1 - 4*x*A(x))^(1/2) ).
Original entry on oeis.org
1, -1, 3, -5, 17, -31, 119, -211, 937, -1483, 8015, -10187, 73369, -62193, 713907, -234857, 7358657, 1881661, 80117735, 69295469, 917837521, 1334044075, 11006114883, 21830065899, 137275956089, 333858963899, 1769128762419, 4940496514271, 23409778504937
Offset: 0
-
a(n) = (-1)^n*sum(k=0, n, 4^(n-k)*binomial(n, k)*binomial(k/2, n-k)/(n-k+1));
A378783
Triangular array T(n,k) read by rows: T(n, k) = c_k(n+1). The sequence c_k(m) has the ordinary generating function C_k(x) which satisfies C_k(x) = 1/(1+C_k(x)*Sum_{t=0..k} x^(t+1)).
Original entry on oeis.org
-1, 2, 1, -5, -1, -2, 14, 1, 5, 4, -42, -1, -12, -8, -9, 132, 1, 29, 18, 22, 21, -429, -1, -73, -43, -54, -50, -51, 1430, 1, 190, 105, 135, 124, 128, 127, -4862, -1, -505, -262, -345, -315, -326, -322, -323, 16796, 1, 1363, 666, 896, 813, 843, 832, 836, 835
Offset: 0
Triangle begins:
[0] -1
[1] 2, 1
[2] -5, -1, -2
[3] 14, 1, 5, 4
[4] -42, -1, -12, -8, -9
[5] 132, 1, 29, 18, 22, 21
[6] -429, -1, -73, -43, -54, -50, -51
[7] 1430, 1, 190, 105, 135, 124, 128, 127
[8] -4862, -1, -505, -262, -345, -315, -326, -322, -323
.
-
T[n_,k_]:=SeriesCoefficient[(2 / (Sqrt[1+4*Sum[x^(t+1),{t,0,k}]] + 1) - 1)/x,{x,0,n}];Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Dec 08 2024 *)
-
column(n, max_n) = { my(s = 1,x = 'x,cu); for(k = 0, max_n-1, cu = cu+polcoeff(1/s+O(x^(k+1)), k, x); cu = cu-polcoeff(1/s+O(x^(k+1)), k-1-n, x); s = s+cu*x^(k+1)); Vec(1/s+O(x^max_n)) };
T(n, k) = column(k, n+2)[n+2]
T(n, k) = polcoeff(2 / (sqrt(1+4*x*sum(t=0, k, x^t)) + 1) + O(x^(n+2)), n+1, x)
Showing 1-5 of 5 results.
Comments