cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A168049 Expansion of (3 -x -sqrt(1-2*x-3*x^2))/2.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Comments

A variant of the Motzkin numbers A001006. Hankel transform is A168050.
Essentially the same as A086246. - R. J. Mathar, Dec 20 2011
Alternatively, this sequence corresponds to the number of positive walks with n steps {-1,0,1} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 01 2016

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 51*x^8 + ... - _Michael Somos_, Sep 26 2018
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((3 -x - Sqrt(1-2*x-3*x^2))/2)); // G. C. Greubel, Sep 25 2018
  • Mathematica
    CoefficientList[Series[(3-x-Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    Vec((3-x-sqrt(1-2*x-3*x^2))/2) \\ Charles R Greathouse IV, Dec 01 2016
    

Formula

D-finite with recurrence: n*a(n) +(3-2n)*a(n-1) +3(3-n)*a(n-2)=0. - R. J. Mathar, Dec 20 2011
0 = a(n)*(+9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1)*(-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 31 2014
a(n) ~ 3^(n+1/2) / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
G.f.: 1 + x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Sep 23 2017

A167022 Expansion of sqrt(1 - 2*x - 3*x^2) in powers of x.

Original entry on oeis.org

1, -1, -2, -2, -4, -8, -18, -42, -102, -254, -646, -1670, -4376, -11596, -31022, -83670, -227268, -621144, -1706934, -4713558, -13072764, -36398568, -101704038, -285095118, -801526446, -2259520830, -6385455594, -18086805002, -51339636952, -146015545604
Offset: 0

Views

Author

Michael Somos, Oct 27 2009

Keywords

Comments

Sequence is to Motzkin numbers as A002420 is to Catalan numbers.

Examples

			G.f. = 1 - x - 2*x^2 - 2*x^3 - 4*x^4 - 8*x^5 - 18*x^6 - 42*x^7 - 102*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n) = polcoeff( sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)}

Formula

D-finite with recurrence: n*a(n) = (2*n - 3)*a(n-1) + (3*n - 9)*a(n-2) for n>1.
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Mar 23 2012
G.f.: sqrt(1 - 2*x - 3*x^2).
Convolution inverse of A002426. A007971(n) = -a(n) unless n=0. A126068(n) = -a(n) unless n=0 or n=1. A001006(n) = -a(n+2)/2 unless n=0 or n=1.
G.f.: A(x)=sqrt(1-2*a*x+((a)^2-4*b)*(x^2)) =1-a*x-2*b*x^2/G(0) ; G(k) = 1 - a*x - b*x^2/G(k+1). - Sergei N. Gladkovskii, Dec 05 2011
a=1;b=1;A(x)=(1-2*x-3*x^2)^(1/2)=1-x-2*x^2/G(0) ; G(k) = 1 - x - x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
G.f.: sqrt(1-2*x-3*(x^2))=1 - x/G(0) = (3*x+2)*G(0) - 1 ; G(k) = 1 - 2*x/(1 + x/(1 + x/(1 - 2*x/(1 - x/(2 - x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
a(n) ~ -3^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 05 2018
a(n) = 2*A168051(n), n>1. - R. J. Mathar, Jan 23 2020

A292440 Expansion of (1 - x + sqrt(1 - 2*x - 3*x^2))/2 in powers of x.

Original entry on oeis.org

1, -1, -1, -1, -2, -4, -9, -21, -51, -127, -323, -835, -2188, -5798, -15511, -41835, -113634, -310572, -853467, -2356779, -6536382, -18199284, -50852019, -142547559, -400763223, -1129760415, -3192727797, -9043402501, -25669818476, -73007772802
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2017

Keywords

Comments

Apart from a(1) the same as A168051. - R. J. Mathar, Sep 18 2017

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x +Sqrt(1-2*x-3*x^2))/2)); // G. C. Greubel, Aug 13 2018
  • Mathematica
    CoefficientList[Series[(1-x +Sqrt[1-2*x-3*x^2])/2, {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    x='x+O('x^50); Vec((1 - x + sqrt(1 - 2*x - 3*x^2))/2) \\ G. C. Greubel, Aug 13 2018
    

Formula

Convolution inverse of A001006.
Let f(x) = (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2).
G.f.: 1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(... (continued fraction).
G.f.: 1/f(x) = 1 - x - x^2*f(x).
a(n) = -A001006(n-2) for n > 1.
a(n) ~ -3^(n - 1/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 14 2018
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Jan 23 2020

A168052 Hankel transform of a Motzkin variant.

Original entry on oeis.org

1, -1, 2, -3, 3, -4, 5, -5, 6, -7, 7, -8, 9, -9, 10, -11, 11, -12, 13, -13, 14, -15, 15, -16, 17, -17, 18, -19, 19, -20, 21, -21, 22, -23, 23, -24, 25, -25, 26, -27, 27, -28, 29, -29, 30, -31, 31, -32, 33, -33, 34, -35, 35, -36, 37, -37, 38, -39, 39, -40, 41, -41, 42, -43
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Comments

Hankel transform of A168051.

Crossrefs

Programs

  • Magma
    I:=[1,-1,2,-3]; [n le 4 select I[n] else - Self(n-1)-Self(n-3)- Self(n-4): n in [1..65]]; // Vincenzo Librandi, Jul 08 2016
  • Mathematica
    LinearRecurrence[{-1, 0, -1, -1}, {1, -1, 2, -3}, 100] (* G. C. Greubel, Jul 07 2016 *)
    CoefficientList[Series[(1 + x^2) / ((1 + x)^2 (1 - x + x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 08 2016 *)

Formula

G.f.: (1+x^2)/((1+x)^2*(1-x+x^2)).
a(n) = cos(Pi*n/3)/3 + sqrt(3)*sin(Pi*n/3)/9 + 2*(n+1)*(-1)^n/3.
a(n) = A010892(n)/3 + 2*(-1)^n*(n+1)/3. - R. J. Mathar, Sep 30 2012
E.g.f.: exp(-x)*(6 - 6*x + exp(3*x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Apr 03 2023
Showing 1-4 of 4 results.