cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166722 a(n) is the number of divisors of A166721(n).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 21, 27, 11, 25, 45, 13, 35, 33, 63, 75, 39, 81, 49, 17, 55, 105, 135, 99, 19, 65, 51, 189, 77, 125, 117, 147, 225, 165, 57, 243, 91, 175, 23, 85, 315, 195, 297, 153, 231, 95, 405, 245, 69, 375, 351, 119, 275, 441, 171, 121, 273, 567, 495, 255, 525
Offset: 1

Views

Author

Alexander Isaev (i2357(AT)mail.ru), Oct 20 2009

Keywords

Comments

This is a permutation of the odd numbers A005408. - Alois P. Heinz, Mar 04 2018

Examples

			a(8) = A000005(A166721(8)) = A000005(900) = A000005(2^2 * 3^2 * 5^2) = (2+1)*(2+1)*(2+1) = 27.
		

Crossrefs

Formula

a(n) = A000005(A166721(n)).

Extensions

Proper definition (and removal of obscure Comments entries) by Jon E. Schoenfield, Mar 03 2018

A007416 The minimal numbers: sequence A005179 arranged in increasing order.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 24, 36, 48, 60, 64, 120, 144, 180, 192, 240, 360, 576, 720, 840, 900, 960, 1024, 1260, 1296, 1680, 2520, 2880, 3072, 3600, 4096, 5040, 5184, 6300, 6480, 6720, 7560, 9216, 10080, 12288, 14400, 15120, 15360, 20160, 25200, 25920, 27720, 32400, 36864, 44100
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that there is no x < k such that A000005(x) = A000005(k). - Benoit Cloitre, Apr 28 2002
A047983(a(n)) = 0. - Reinhard Zumkeller, Nov 03 2015
Subsequence of A025487. If some m in A025487 is the first term in that sequence having its number of divisors, m is in this sequence. - David A. Corneth, Aug 31 2019

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A025487; A002182 is a subsequence.
Cf. A000005, A047983, A166721 (subsequence of squares).
Cf. A053212 and A064787 (the sequence {A000005(a(n))} and its inverse permutation).

Programs

  • Haskell
    a007416 n = a007416_list !! (n-1)
    a007416_list = f 1 [] where
       f x ts = if tau `elem` ts then f (x + 1) ts else x : f (x + 1) (tau:ts)
                where tau = a000005' x
    -- Reinhard Zumkeller, Apr 18 2015
  • Maple
    for n from 1 to 10^5 do
      t:= numtheory:-tau(n);
      if not assigned(B[t]) then B[t]:= n fi;
    od:
    sort(map(op,[entries(B)]));# Robert Israel, Nov 11 2015
  • Mathematica
    A007416 = Reap[ For[ s = 1, s <= 10^5, s++, If[ Abs[ Product[ DivisorSigma[0, i] - DivisorSigma[0, s], {i, 1, s-1}]] > 0, Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Nov 19 2012, after Pari *)
  • PARI
    for(s=1,10^6,if(abs(prod(i=1,s-1,numdiv(i)-numdiv(s)))>0,print1(s,",")))
    
  • PARI
    is(n)=my(d=numdiv(n));for(i=1,n-1,if(numdiv(i)==d, return(0))); 1 \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    A283980(n,f=factor(n))=prod(i=1, #f~, my(p=f[i, 1]); if(p==2, 6, nextprime(p+1))^f[i, 2])
    A025487do(e) = my(v=List([1, 2]), i=2, u = 2^e, t); while(v[i] != u, if(2*v[i] <= u, listput(v, 2*v[i]); t = A283980(v[i]); if(t <= u, listput(v, t))); i++); Set(v)
    winnow(v,lim=v[#v])=my(m=Map(),u=List()); for(i=1,#v, if(v[i]>lim, break); my(t=numdiv(v[i])); if(!mapisdefined(m,t), mapput(m,t,0); listput(u,v[i]))); m=0; Vec(u)
    list(lim)=winnow(A025487do(logint(lim\1-1,2)+1),lim) \\ Charles R Greathouse IV, Nov 17 2022
    

A354530 Numbers k such that k^2 is a minimal number; numbers k whose square is in A007416.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 60, 64, 72, 96, 120, 180, 192, 210, 216, 256, 288, 360, 420, 480, 512, 576, 768, 840, 864, 900, 960, 1080, 1260, 1440, 1536, 1680, 1728, 1800, 2048, 2304, 2520, 2880, 3360, 3840, 4320, 4608, 4620, 5400, 6144, 6300, 6720, 6912, 7200, 7560
Offset: 1

Views

Author

Jianing Song, Aug 16 2022

Keywords

Comments

Numbers k such that there is no m < k^2 such that d(m) = d(k^2), d = A000005. Since only squares have an odd number of divisors, also numbers k such that there is no m < k such that d(m^2) = d(k^2).

Examples

			8 is a term since 8^2 = 64 has 7 divisors and no smaller number (smaller square) has that many divisors.
		

Crossrefs

Square root of A166721. Also A016017 or A071571 sorted.
Cf. also A166722.

Programs

  • PARI
    lista(nn) = {v = []; for (n=1, nn, d = numdiv(n^2); if (! vecsearch(v, d), print1(n, ", "); v = Set(concat(v, d))); ); } \\ from Michel Marcus's program for A166721

Formula

d(a(n)^2) = A166722(n).
Showing 1-3 of 3 results.