A168183 Numbers that are not multiples of 9.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
-
Haskell
a168183 n = a168183_list !! (n-1) a168183_list = [1..8] ++ map (+ 9) a168183_list -- Reinhard Zumkeller, Mar 04 2014
-
Magma
[n+Floor((n-1)/8) : n in [1..100]]; // Wesley Ivan Hurt, Sep 12 2015
-
Maple
A168183:=n->n+floor((n-1)/8): seq(A168183(n), n=1..100); # Wesley Ivan Hurt, Sep 12 2015
-
Mathematica
Select[Table[n,{n,200}],Mod[#,9]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *) With[{nn=81},Complement[Range[nn],9Range[Floor[nn/9]]]] (* Harvey P. Dale, Sep 07 2011 *)
-
PARI
is(n)=!!(n%9) \\ Charles R Greathouse IV, Sep 02 2015
-
PARI
a(n)=(9*n-1)\8 \\ Charles R Greathouse IV, Sep 02 2015
-
Python
from gmpy2 import f_mod [n for n in range(100) if f_mod(n,9)] # Bruno Berselli, Dec 05 2016
Formula
A168182(a(n)) = 1.
A109012(a(n)) < 9.
From Wesley Ivan Hurt, Sep 12 2015: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9), n>9.
a(n) = n + floor((n-1)/8). (End)
From Philippe Deléham, Dec 05 2016: (Start)
a(n) = 1 + A248375(n-1).
G.f.: x*(1-x^9)/((1-x)^2*(1-x^8)). (End)
E.g.f.: 1 + (1/8)*(-cos(x) + (-5+9*x)*cosh(x) - 2*cos(x/sqrt(2))*cosh(x/sqrt(2)) + sin(x) + (-4+9*x)*sinh(x) + 2*sin(x/sqrt(2))*(sqrt(2)*cosh(x/sqrt(2)) + sinh(x/sqrt(2)))). - Stefano Spezia, Sep 20 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3) + 3*cosec(2*Pi/9) - 3*tan(Pi/18)) * Pi/27. - Amiram Eldar, May 11 2025
Comments