cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168183 Numbers that are not multiples of 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(z) = digit_sum(a(n)+z). - Max Lacoma, Sep 19 2019. Giovanni Resta: this follows immediately from the well-known fact that sod(x) == x (mod 9).

Crossrefs

Complement of A008591.

Programs

Formula

A168182(a(n)) = 1.
A010888(a(n)) = A010887(n-1).
A109012(a(n)) < 9.
From Wesley Ivan Hurt, Sep 12 2015: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9), n>9.
a(n) = n + floor((n-1)/8). (End)
From Philippe Deléham, Dec 05 2016: (Start)
a(n) = 1 + A248375(n-1).
G.f.: x*(1-x^9)/((1-x)^2*(1-x^8)). (End)
E.g.f.: 1 + (1/8)*(-cos(x) + (-5+9*x)*cosh(x) - 2*cos(x/sqrt(2))*cosh(x/sqrt(2)) + sin(x) + (-4+9*x)*sinh(x) + 2*sin(x/sqrt(2))*(sqrt(2)*cosh(x/sqrt(2)) + sinh(x/sqrt(2)))). - Stefano Spezia, Sep 20 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3) + 3*cosec(2*Pi/9) - 3*tan(Pi/18)) * Pi/27. - Amiram Eldar, May 11 2025