A168607 a(n) = 3^n + 2.
3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gennady Eremin, Arithmetization of well-formed parenthesis strings. Motzkin Numbers of the Second Kind, arXiv:2012.12675 [math.CO], 2020.
- Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[3^n+2: n in [0..30]];
-
Maple
A168607:=n->3^n + 2; seq(A168607(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014
-
Mathematica
CoefficientList[Series[(3 - 7 x)/((1-x) (1-3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *) NestList[3 # - 4 & , 3, 25] (* Bruno Berselli, Feb 06 2013 *)
-
PARI
a(n)=3^n+2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 3*a(n-1) - 4, a(0) = 3.
a(n+1) - a(n) = A008776(n).
a(n+2) - a(n) = A005051(n).
G.f.: (3 - 7*x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), a(0) = 3, a(1) = 5. - Vincenzo Librandi, Feb 06 2013
E.g.f.: exp(3*x) + 2*exp(x). - Elmo R. Oliveira, Nov 09 2023
Extensions
Edited by Klaus Brockhaus, Apr 13 2010
Further edited by N. J. A. Sloane, Aug 10 2010
Comments