cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169630 a(n) = n times the square of Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 12, 36, 125, 384, 1183, 3528, 10404, 30250, 87131, 248832, 705757, 1989806, 5581500, 15586704, 43356953, 120187008, 332134459, 915304500, 2516113236, 6900949462, 18888143927, 51599794176, 140718765625, 383142771674, 1041660829548, 2828107288188, 7668512468789
Offset: 0

Views

Author

R. J. Mathar, Mar 13 2010

Keywords

Crossrefs

Cf. A000045, A007598, A045925, A282464 (partial sums).

Programs

  • Haskell
    a169630 n = a007598 n * n  -- Reinhard Zumkeller, Sep 01 2013
    
  • Magma
    I:=[0,1,2,12,36,125]; [n le 6 select I[n] else 4*Self(n-1)-10*Self(n-3)+4*Self(n-5)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
    
  • Maple
    A169630 := proc(n) n*(combinat[fibonacci](n))^2 ; end proc:
  • Mathematica
    CoefficientList[Series[x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 + x)^2*(x^2 - 3*x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    Table[n Fibonacci[n]^2,{n,0,30}] (* or *) LinearRecurrence[{4,0,-10,0,4,-1},{0,1,2,12,36,125},30] (* Harvey P. Dale, Jul 07 2017 *)
  • PARI
    vector(40, n, n--; n*fibonacci(n)^2) \\ Michel Marcus, Jul 09 2015

Formula

a(n) = A045925(n)*A000045(n) = n*A007598(n) = n *(A000045(n))^2.
a(n) = 4*a(n-1) -10*a(n-3) +4*a(n-5) -a(n-6).
G.f.: x*(1-2*x+4*x^2-2*x^3+x^4)/((1+x)^2*(x^2-3*x+1)^2).
a(n) = n*(((3 + sqrt(5))/2)^n + ((3 - sqrt(5))/2)^n - 2*(-1)^n)/5 (Bogdanowicz). - Stefano Spezia, May 05 2024