cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A282464 a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.

Original entry on oeis.org

0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
Offset: 0

Views

Author

Bruno Berselli, Feb 16 2017

Keywords

Crossrefs

Cf. A000045.
Partial sums of A169630.
Cf. A014286: partial sums of i*Fibonacci(i).
Cf. A064831: partial sums of (n+1-i)*Fibonacci(i)^2.

Programs

  • Magma
    [&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
  • Maple
    with(combinat): P:=proc(q) local a,n; a:=0; print(a); for n from 1 to q do
    a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
  • Mathematica
    a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
    LinearRecurrence[{5,-4,-10,10,4,-5,1},{0,1,3,15,51,176,560},30] (* Harvey P. Dale, May 15 2021 *)
  • Maxima
    makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30);
    
  • PARI
    a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
    
  • Sage
    [sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
    

Formula

O.g.f.: x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 - x)*(1 + x)^2*(1 - 3*x + x^2)^2).
a(n) = 5*a(n-1) - 4*a(n-2) - 10*a(n-3) + 10*a(n-4) + 4*a(n-5) - 5*a(n-6) + a(n-7).
a(n) = ((n-1)*Fibonacci(n) + n*Fibonacci(n-1))*Fibonacci(n) + (1 - (-1)^n)/2.

A259451 a(n) = n^2*Fibonacci(n).

Original entry on oeis.org

0, 1, 4, 18, 48, 125, 288, 637, 1344, 2754, 5500, 10769, 20736, 39377, 73892, 137250, 252672, 461533, 837216, 1509341, 2706000, 4827186, 8572124, 15159553, 26707968, 46890625, 82061668, 143188722, 249163824, 432466589, 748836000, 1293764509, 2230588416, 3838265442, 6592537372, 11303644625, 19349736192
Offset: 0

Views

Author

N. J. A. Sloane, Jun 27 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n^2*(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 30 2015
  • Mathematica
    a[n_] := n^2 MatrixPower[{{1, 1}, {1, 0}}, n][[1, 2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 14 2016, after Alois P. Heinz *)
  • PARI
    concat(0, Vec(-x*(x^4-x^3+6*x^2+x+1)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Jun 29 2015

Formula

From Colin Barker, Jun 29 2015: (Start)
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6).
G.f.: -x*(x^4 - x^3 + 6*x^2 + x + 1)/(x^2 + x - 1)^3. (End)
E.g.f.: exp(x/2)*x*(sqrt(5)*(1 + x)*cosh(sqrt(5)*x/2) + (1 + 3*x)*sinh(sqrt(5)*x/2))/sqrt(5). - Stefano Spezia, Mar 04 2023

A005822 G.f.: x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1).

Original entry on oeis.org

0, 1, 1, 2, 4, 11, 16, 49, 72, 214, 319, 947, 1408, 4187, 6223, 18502, 27504, 81769, 121552, 361379, 537196, 1597106, 2374129, 7058377, 10492416, 31194361, 46371025, 137862866, 204935836, 609282227, 905709904, 2692710841, 4002767136, 11900382694, 17690150767
Offset: 0

Views

Author

Keywords

Comments

This is a rescaled version of the number of spanning trees in the cube of an n-cycle. See A331905 for details. - N. J. A. Sloane, Feb 06 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020
  • Maple
    A005822:=-z*(z-1)*(1+z)*(z**4+z**3-z**2+z+1)/(-4*z**6-z**4-4*z**2+1+z**8); # [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; adapted to offset 0 by Georg Fischer, Jan 27 2020]
  • Mathematica
    CoefficientList[Series[x (1 - x^2) (x^4 + x^3 - x^2 + x + 1) / (x^8 - 4 x^6 - x^4 - 4 x^2 + 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 28 2020 *)
  • PARI
    Vec(-x*(x-1)*(x+1)*(x^4+x^3-x^2+x+1)/(x^8-4*x^6-x^4-4*x^2+1) + O(x^50)) \\ Colin Barker, Jul 09 2015
    

Extensions

G.f. adapted to the offset from Colin Barker, Jul 09 2015
Entry revised by N. J. A. Sloane, Jan 25 2020 and Feb 06 2020.

A078692 Triangle reads by rows: T(n,k) = coefficient of x^k in (x^3-2*x^2-2*x+1)^n.

Original entry on oeis.org

1, -2, -2, 1, 1, -4, 0, 10, 0, -4, 1, 1, -6, 6, 19, -24, -24, 19, 6, -6, 1, 1, -8, 16, 20, -80, -8, 134, -8, -80, 20, 16, -8, 1, 1, -10, 30, 5, -160, 128, 330, -340, -340, 330, 128, -160, 5, 30, -10, 1, 1, -12, 48, -34, -240, 468, 399, -1416, -192, 2020, -192, -1416, 399, 468, -240, -34, 48, -12, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 01 2003

Keywords

Comments

Original name: Coefficients of polynomials in the denominator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2 (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the highest power of x.

Examples

			Triangle begins:
  1, -2, -2, 1; # see A007598
  1, -4, 0, 10, 0, -4, 1;  # see A169630
  1, -6, 6, 19, -24, -24, 19, 6, -6, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    A078692row[n_] := Module[{x}, CoefficientList[(x^3 - 2*x^2 - 2*x + 1)^n, x]];
    Array[A078692row, 6] (* Paolo Xausa, Jul 14 2025 *)
  • PARI
    row(n) = Vec((x^3-2*x^2-2*x+1)^n); \\ Michel Marcus, Jul 11 2025

Formula

(d^(n)/d(x^n)) f(x), where f(x) = (x-x^2) / (x^3-2*x^2-2*x+1), for n=0, 1, 2, 3, ...

Extensions

Missing a(9) inserted and entry revised by Sean A. Irvine, Jul 11 2025

A331905 Number of spanning trees in the multigraph cube of an n-cycle.

Original entry on oeis.org

1, 4, 12, 128, 605, 3072, 16807, 82944, 412164, 2035220, 9864899, 47579136, 227902597, 1084320412, 5134860060, 24207040512, 113664879137, 531895993344, 2481300851179, 11543181696640, 53565699079956, 248005494380204, 1145875775104967, 5284358088818688
Offset: 1

Views

Author

David J. Seal, Jan 31 2020

Keywords

Comments

The multigraph cube of an n-cycle has n nodes V1, V2, ... Vn, with one edge Vi to Vj for each pair (i,j) such that j = i+1, i+2 or i+3 modulo n. It is a multigraph when n <= 6 because this produces instances of multiple edges between the same two vertices, and it also produces loops if n <= 3.
Baron et al. (1985) describes the corresponding sequence A169630 for the multigraph square of a cycle.
I conjecture that a(n) = gcd(n,2) * n * (A005822(n))^2. [This is correct - see the Formula section. - N. J. A. Sloane, Feb 06 2020]
Terms a(7) to a(18) calculated by Brendan McKay, and terms a(1) to a(6) by David J. Seal, in both cases using Kirchhoff's matrix tree theorem.

Examples

			The multigraph cube of a 4-cycle has four vertices, with two edges between each pair of distinct vertices - i.e., it is a doubled-edge cover of the complete graph on 4 vertices. The complete graph on 4 vertices has 4^2 = 16 spanning trees, and each of those spanning trees corresponds to 8 spanning trees of the multigraph tree because there are independent choices of 2 multigraph edges to be made for each of the three edges in the graph's spanning tree. So a(4) = 16 * 8 = 128.
		

Crossrefs

Cf. A005822, A169630 (corresponding sequence for the multigraph square of an n-cycle).

Programs

  • Maple
    a:= n-> ((<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|4|1|4>>^iquo(n, 2, 'd').
           <[<0, 1, 4, 16>, <1, 2, 11, 49>][d+1]>)[1, 1])^2*n*(2-irem(n, 2)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 06 2020

Formula

The following formulas were provided by Tsuyoshi Miezaki on Feb 05 2020 (see Doi et al. link). Let z1=(-3+sqrt(-7))/4, z2=(-3-sqrt(-7))/4; T(n,z) = cos(n*arccos(z)). Then a(n) = (2*n/7)*(T(n,z1)-1)*(T(n,z2)-1). Furthermore a(n) = 2*n*A005822(n)^2 if n is even, or n*A005822(n)^2 if n is odd. - N. J. A. Sloane, Feb 06 2020

Extensions

More terms from Alois P. Heinz, Feb 06 2020
Showing 1-5 of 5 results.