A180269
Primes of the form 3^n+3*n+1.
Original entry on oeis.org
2, 7, 37, 36472996377170786527, 2954312706550833698779, 3990838394187339929534246675572349035477, 2120895147045314119491609587512844743630072393, 228532044137599177017869183161846685251274404207185590172004697234871412029099114059347
Offset: 1
Graziano Aglietti (mg5055(AT)mclink.it), Aug 23 2010
-
Select[Table[3^n+3n+1,{n,0,100}],PrimeQ] (* Harvey P. Dale, May 11 2013 *)
-
for(i=0,200,x=3^i+3*i+1;if(isprime(x),print1(x", ")))
A301632
Numbers k such that 3^k + k + 1 is a prime.
Original entry on oeis.org
0, 1, 3, 15, 45, 117, 159, 3739, 3777, 9703, 10623, 21459, 86595
Offset: 1
-
a:=n->`if`(isprime(3^k+k+1),k,NULL): seq(a(k),k=0..6000); # Muniru A Asiru, Mar 25 2018
-
Flatten[{0, Select[Range[5000], PrimeQ[3^# + # + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 1000, if(isprime(3^n+n+1), print1(n", ")))
A301634
Numbers k such that 2^k + 2*k + 1 is prime.
Original entry on oeis.org
0, 1, 5, 13, 65, 85, 229, 2005, 3875, 3919, 5417, 8819, 11899, 16668, 19445, 28242, 33407, 37918, 40594, 141251
Offset: 1
Numbers k such that b^k + b*k + 1 is prime: this sequence (b=2),
A171058 (b=3),
A301635 (b=5).
-
a:=k->`if`(isprime(2^k+2*k+1),k,NULL): seq(a(k),k=0..6000); # Muniru A Asiru, Mar 25 2018
-
Flatten[{0, Select[Range[5000], PrimeQ[2^# + 2*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 500, if(isprime(2^n+2*n+1), print1(n", ")))
A301635
Numbers k such that 5^k + 5*k + 1 is prime.
Original entry on oeis.org
0, 1, 11, 25, 35, 85, 499, 1403, 3511, 3739, 8005
Offset: 1
-
Flatten[{0, Select[Range[1000], PrimeQ[5^# + 5*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 500, if(isprime(5^n+5*n+1), print1(n", ")))
Showing 1-4 of 4 results.
Comments