cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171058 Numbers k such that 3^k + 3*k + 1 is prime.

Original entry on oeis.org

0, 1, 3, 41, 45, 83, 95, 181, 193, 195, 311, 325, 901, 1825, 3649, 7709, 16335, 45547
Offset: 1

Views

Author

N. J. A. Sloane, Sep 04 2010, based on a posting to the Sequence Fans Mailing List by Charles R Greathouse IV, Aug 23 2010

Keywords

Comments

a(19) > 10^5. - Michael S. Branicky, Jul 25 2024

Crossrefs

Numbers k such that b^k + b*k + 1 is prime: A301634 (b=2), this sequence (b=3), A301635 (b=5).

Programs

Extensions

More terms from Charles R Greathouse IV, Sep 07 2010

A301635 Numbers k such that 5^k + 5*k + 1 is prime.

Original entry on oeis.org

0, 1, 11, 25, 35, 85, 499, 1403, 3511, 3739, 8005
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

a(12), if it exists, is greater than 20000. - Vaclav Kotesovec, Mar 25 2018
a(12), if it exists, is greater than 80000. - Michael S. Branicky, Sep 03 2024

Crossrefs

A301638 gives the primes.

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[5^# + 5*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 500, if(isprime(5^n+5*n+1), print1(n", ")))

Extensions

a(8)-a(11) from Vaclav Kotesovec, Mar 25 2018

A301744 Numbers k such that 2^k - 2*k + 1 is prime.

Original entry on oeis.org

0, 3, 5, 6, 8, 11, 12, 13, 18, 25, 31, 35, 114, 152, 186, 228, 245, 308, 360, 371, 575, 685, 721, 732, 1361, 2394, 3138, 3446, 5964, 9482, 22793, 51233, 112800, 120491, 199615, 416641
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Comments

Terms through 1361 correspond to provable primes; terms beyond 1361 correspond to probable primes.
After 22793, there are no more terms through 40000. - Jon E. Schoenfield, Mar 27 2018
a(37) > 5*10^5. - Robert Price, Jun 01 2018

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] |IsPrime(2^n-2*n+1)]; // Vincenzo Librandi, Mar 27 2018
    
  • Maple
    select(k->isprime(2^k-2*k+1),[$0..3000]); # Muniru A Asiru, Apr 03 2018
  • Mathematica
    Select[Range[0, 1000], PrimeQ[2^# - 2*# + 1] &]
  • PARI
    isok(n) = isprime(2^n-2*n+1); \\ Michel Marcus, Mar 27 2018

Extensions

a(31) from Jon E. Schoenfield, Mar 27 2018
a(32)-a(34) from Robert Price, Apr 03 2018
a(35)-a(36) from Robert Price, Jun 01 2018
Showing 1-3 of 3 results.