cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A193376 T(n,k) = number of ways to place any number of 2 X 1 tiles of k distinguishable colors into an n X 1 grid; array read by descending antidiagonals, with n, k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 11, 8, 1, 6, 9, 19, 21, 13, 1, 7, 11, 29, 40, 43, 21, 1, 8, 13, 41, 65, 97, 85, 34, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1, 10, 17, 71, 133, 301, 441, 508, 341, 89, 1, 11, 19, 89, 176, 463, 781, 1165, 1159, 683, 144, 1, 12, 21, 109, 225, 673
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2011

Keywords

Comments

Transposed variant of A083856. - R. J. Mathar, Aug 23 2011
As to the sequences by columns beginning (1, N, ...), let m = (N-1). The g.f. for the sequence (1, N, ...) is 1/(1 - x - m*x^2). Alternatively, the corresponding matrix generator is [[1,1], [m,0]]. Another equivalency is simply: The sequence beginning (1, N, ...) is the INVERT transform of (1, m, 0, 0, 0, ...). Convergents to the sequences a(n)/a(n-1) are (1 + sqrt(4*m+1))/2. - Gary W. Adamson, Feb 25 2014

Examples

			Array T(n,k) (with rows n >= 1 and column k >= 1) begins as follows:
  ..1...1....1....1.....1.....1.....1......1......1......1......1......1...
  ..2...3....4....5.....6.....7.....8......9.....10.....11.....12.....13...
  ..3...5....7....9....11....13....15.....17.....19.....21.....23.....25...
  ..5..11...19...29....41....55....71.....89....109....131....155....181...
  ..8..21...40...65....96...133...176....225....280....341....408....481...
  .13..43...97..181...301...463...673....937...1261...1651...2113...2653...
  .21..85..217..441...781..1261..1905...2737...3781...5061...6601...8425...
  .34.171..508.1165..2286..4039..6616..10233..15130..21571..29844..40261...
  .55.341.1159.2929..6191.11605.19951..32129..49159..72181.102455.141361...
  .89.683.2683.7589.17621.35839.66263.113993.185329.287891.430739.624493...
  ...
Some solutions for n = 5 and k = 3 with colors = 1, 2, 3 and empty = 0:
..0....2....3....2....0....1....0....0....2....0....0....2....3....0....0....0
..0....2....3....2....2....1....2....3....2....1....0....2....3....1....1....1
..1....0....0....0....2....0....2....3....2....1....0....1....0....1....1....1
..1....2....2....0....3....2....2....3....2....0....3....1....3....3....2....1
..0....2....2....0....3....2....2....3....0....0....3....0....3....3....2....1
		

Crossrefs

Column 1 is A000045(n+1), column 2 is A001045(n+1), column 3 is A006130, column 4 is A006131, column 5 is A015440, column 6 is A015441(n+1), column 7 is A015442(n+1), column 8 is A015443, column 9 is A015445, column 10 is A015446, column 11 is A015447, and column 12 is A053404,
Row 2 is A000027(n+1), row 3 is A004273(n+1), row 4 is A028387, row 5 is A000567(n+1), and row 6 is A106734(n+2).
Diagonal is A171180, superdiagonal 1 is A083859(n+1), and superdiagonal 2 is A083860(n+1).

Programs

  • Maple
    T:= proc(n,k) option remember; `if`(n<0, 0,
          `if`(n<2 or k=0, 1, k*T(n-2, k) +T(n-1, k)))
        end;
    seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 2 || k == 0, 1, k*T[n-2, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. Thus, T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n = 0, 1, ..., z-1.
The solution is T(n,k) = Sum_r r^(-n-1)/(1 + z*k*r^(z-1)), where the sum is over the roots r of the polynomial k*x^z + x - 1.
For z = 2, T(n,k) = ((2*k / (sqrt(1 + 4*k) - 1))^(n+1) - (-2*k/(sqrt(1 + 4*k) + 1))^(n+1)) / sqrt(1 + 4*k).
T(n,k) = Sum_{s=0..[n/2]} binomial(n-s,s) * k^s.
For z X 1 tiles, T(n,k,z) = Sum_{s = 0..[n/z]} binomial(n-(z-1)*s, s) * k^s. - R. H. Hardin, Jul 31 2011

Extensions

Formula and proof from Robert Israel in the Sequence Fans mailing list.

A368891 a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(n-2*k,k).

Original entry on oeis.org

1, 1, 1, 4, 9, 16, 61, 183, 433, 1603, 5581, 15951, 59449, 225928, 738893, 2827321, 11387617, 41174086, 163185805, 686315474, 2680560361, 11035625413, 48086847117, 199640217719, 853587430801, 3836667616201, 16739402030989, 74206353913480
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2 - n/2, -n/2}, -27*n/4], {n, 0, 30}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, n^k*binomial(n-2*k, k));

Formula

a(n) = [x^n] 1/(1 - x - n*x^3).
a(n) ~ exp(n^(2/3)/3 + n^(1/3)/18) * n^(n/3) / 3 * (1 + 2/(3*n^(1/3)) + 2/(9*n^(2/3))). - Vaclav Kotesovec, Jan 09 2024

A350467 a(n) = hypergeom([1/2 - n/2, -n/2], [-n], -8*n).

Original entry on oeis.org

1, 1, 5, 13, 89, 341, 2653, 13021, 110449, 648469, 5891381, 39734685, 382729801, 2887493077, 29287115341, 242592910621, 2577978650081, 23125601566165, 256460946182821, 2465492129670493, 28441473938165561, 290630718826209301, 3477967327342044989, 37528922270996471133
Offset: 0

Views

Author

Peter Luschny, Mar 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Hypergeometric2F1[(1 - n)/2, -n/2, -n, -8 n ], {n, 0, 23}]
    Table[FullSimplify[((1 + Sqrt[8*n + 1])^(n+1) - (1 - Sqrt[8*n + 1])^(n+1)) / (Sqrt[8*n + 1] * 2^(n+1))], {n, 0, 25}] (* Vaclav Kotesovec, Jan 08 2024 *)

Formula

a(n) = Sum_{k=0..n} binomial(n - k, k)*(2*n)^k.
a(n) = A350470(n, n).
From Vaclav Kotesovec, Jan 08 2024: (Start)
a(n) = ((1 + sqrt(8*n+1))^(n+1) - (1 - sqrt(8*n+1))^(n+1)) / (sqrt(8*n+1) * 2^(n+1)).
a(n) ~ exp(sqrt(n/2)/2) * 2^(n/2 - 1) * n^(n/2) * (1 + 47/(96*sqrt(2*n))). (End)

A371826 a(n) = Sum_{k=0..floor(n/2)} n^k * binomial(2*n-k,n-2*k).

Original entry on oeis.org

1, 2, 8, 35, 170, 872, 4740, 26994, 161006, 1001009, 6476976, 43480373, 302250196, 2170406149, 16070240276, 122453910495, 958755921686, 7701233828576, 63381318474768, 533793776053926, 4595440308780620, 40400161269188412, 362367733795887848
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, n^k*binomial(2*n-k, n-2*k));

Formula

a(n) = [x^n] 1/((1-x-n*x^2) * (1-x)^n).
a(n) ~ exp(3*sqrt(n)/2) * n^(n/2) / 2. - Vaclav Kotesovec, Apr 07 2024

A368889 a(n) = Sum_{k=0..floor(n/2)} n^(3*k) * binomial(n-k,k).

Original entry on oeis.org

1, 1, 9, 55, 4289, 47376, 10358713, 162592977, 70065589761, 1419907258279, 1015035028009001, 25173466118539344, 26947505294538873409, 790057195504021692521, 1183327797361056503499225, 40027334070963910087734751, 79925496016112851520801796097
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Hypergeometric2F1[1/2 - n/2, -n/2, -n, -4*n^3], {n, 0, 20}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, n^(3*k)*binomial(n-k, k));

Formula

a(n) = [x^n] 1/(1 - x - n^3*x^2).
a(n) ~ n^(3*n/2) if n is even and a(n) ~ n^((3*n-1)/2)/2 if n is odd. - Vaclav Kotesovec, Jan 09 2024

A368888 a(n) = Sum_{k=0..floor(n/2)} n^(2*k) * binomial(n-k,k).

Original entry on oeis.org

1, 1, 5, 19, 305, 1976, 54613, 494901, 19460545, 226000855, 11535280901, 163226844144, 10246715573041, 170910034261721, 12736193619206485, 244588264748170651, 21100437309369290497, 458426839205360652760, 44935948904379592796101
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Hypergeometric2F1[1/2 - n/2, -n/2, -n, -4*n^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, n^(2*k)*binomial(n-k, k));

Formula

a(n) = [x^n] 1/(1 - x - (n*x)^2).
a(n) ~ (exp(1/2) + (-1)^n*exp(-1/2)) * n^n / 2. - Vaclav Kotesovec, Jan 09 2024

A368894 a(n) = Sum_{k=0..floor(n/2)} (-n)^k * binomial(n-k,k).

Original entry on oeis.org

1, 1, -1, -5, 5, 56, -29, -923, -119, 19855, 17711, -524160, -926771, 16339441, 45275035, -585443909, -2298643951, 23626165600, 124604211943, -1056587815835, -7261611779179, 51645640102519, 455056929514067, -2724884512463520, -30595315890959975
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-n)^k*binomial(n-k, k));

Formula

a(n) = [x^n] 1/(1 - x + n*x^2).

A368898 a(n) = Sum_{k=0..floor(n/4)} n^k * binomial(n-3*k,k).

Original entry on oeis.org

1, 1, 1, 1, 5, 11, 19, 29, 105, 298, 671, 1299, 3997, 12468, 33083, 75781, 220625, 708867, 2086183, 5412778, 15756741, 51093316, 160523859, 457283931, 1365001273, 4458076176, 14608351135, 44649287452, 137979763181, 455582050840, 1536403659211, 4953147876189
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/3 - n/3, 2/3 - n/3, -n/3}, -256*n/27], {n, 0, 20}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\4, n^k*binomial(n-3*k, k));

Formula

a(n) = [x^n] 1/(1 - x - n*x^4).
a(n) = hypergeom([(1-n)/4, (2-n)/4, (3-n)/4, -n/4], [(1-n)/3, (2-n)/3, -n/3], -256*n/27). - Stefano Spezia, Jan 09 2024
a(n) ~ (1/4) * exp(n^(3/4)/4 + sqrt(n)/16 + 5*n^(1/4)/384) * n^(n/4) * (1 + 30643/(40960*n^(1/4)) + 3749229947/(10066329600*sqrt(n)) + 15892274778169/(137438953472000*n^(3/4))). - Vaclav Kotesovec, Jan 09 2024
Showing 1-8 of 8 results.