cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171749 Odd primes of the form (1+n)*(2+2*n)+n*(3+2*n) = 4*n^2+7*n+2.

Original entry on oeis.org

13, 59, 137, 389, 563, 769, 1277, 1579, 1913, 2677, 5147, 5737, 6359, 7013, 7699, 9949, 12487, 13397, 15313, 16319, 18427, 20663, 23027, 26813, 32309, 36767, 38317, 41513, 43159, 51869, 61379, 63377, 65407, 73847, 78259, 80513, 82799, 89849
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite under the Bunyakovsky conjecture. - Charles R Greathouse IV, Apr 04 2012
Also primes of the form 16*m^2-2*m-1, by the substitution n=2*m-1. [Note that n is odd because otherwise 4n^2+7n+2 is even]. - Bruno Berselli, Jul 03 2012

Crossrefs

Cf. A171748.

Programs

  • Mathematica
    f[n_] := (1+n)(2+2*n)+n*(3+2*n); lst={}; Do[If[PrimeQ[f[n]], AppendTo[lst, f[n]]], {n, 6!}]; lst
    Select[Table[4*n^2+7*n+2,{n, 1000}],PrimeQ] (* Vincenzo Librandi, Aug 01 2012 *)

A171838 Primes of the form 3*k^2 + 9*k + 5.

Original entry on oeis.org

5, 17, 59, 89, 167, 269, 467, 719, 1259, 1949, 2267, 2609, 2789, 3167, 3779, 4217, 4679, 4919, 5417, 5939, 7349, 7649, 9239, 10979, 11717, 12479, 14489, 15767, 16649, 17099, 18959, 21419, 21929, 24029, 25667, 28517, 31517, 34667, 35969, 36629
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 12*k^2 + 18*k + 5. - Charles R Greathouse IV, Apr 13 2012

Crossrefs

Programs

  • Magma
    [3*n^2 +9*n +5: n in [0..250] | IsPrime(3*n^2 +9*n +5)]; // G. C. Greubel, Apr 29 2021
    
  • Mathematica
    Select[Table[3n^2+9n+5, {n,0,200}], PrimeQ] (* Harvey P. Dale, Jul 18 2014 *)
  • PARI
    for(n=0,99,if(isprime(t=12*n^2+18*n+5),print1(t", "))) \\ Charles R Greathouse IV, Apr 13 2012
    
  • Sage
    [3*n^2 +9*n +5 for n in (0..250) if is_prime(3*n^2 +9*n +5)] # G. C. Greubel, Apr 29 2021

Extensions

Definition simplified by Charles R Greathouse IV, Apr 13 2012

A182048 Numbers n such that 16n^2-2n-1 and 16n^2+2n-1 are both primes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 13, 19, 29, 32, 36, 62, 63, 70, 75, 78, 85, 93, 96, 102, 107, 109, 119, 123, 128, 145, 158, 164, 174, 177, 190, 192, 197, 219, 241, 247, 252, 280, 284, 299, 304, 318, 335, 340, 344, 354, 361, 374, 377, 382, 385, 387, 427, 434, 439, 440
Offset: 1

Views

Author

Gerasimov Sergey, Apr 08 2012

Keywords

Examples

			a(1)=1 because 16*1^2-2*1-1=13 is prime and 16*1^2+2*1-1=17 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeQ[16 #^2 - 2 # - 1] && PrimeQ[16 #^2 + 2 # - 1] &] (* T. D. Noe, Apr 16 2012 *)
    Select[Range[500],AllTrue[16#^2-1+{2#,-2#},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 01 2018 *)

Extensions

Corrected and extended by T. D. Noe, Apr 16 2012
Showing 1-3 of 3 results.