cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022838 Beatty sequence for sqrt(3); complement of A054406.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112
Offset: 1

Views

Author

Keywords

Comments

0 <= A144077(n) - a(n) <= 1. - Reinhard Zumkeller, Sep 09 2008
From Reinhard Zumkeller, Jan 20 2010: (Start)
A080757(n) = a(n+1) - a(n).
A171970(n) = floor(a(n)/2).
A171972(n) = a(A000290(n)). (End)
Numbers k>0 such that A194979(k+1) = A194979(k) + 1. - Clark Kimberling, Dec 02 2014
Powers of 2 (i.e, 1, 8, 32, 64, 128, 256, 512, 4096, 8192,...) appear at n=1, 5, 19, 37, 74, 148, 296, 2365, 4730, 18919, 75675, 151349, 302698, 605396, ... related to A293328. - R. J. Mathar, Jan 17 2025

Crossrefs

Cf. A080757 (first differences), A194106 (partial sums), A194028 (even bisection), A184796 (prime terms).
Cf. A026255, A054406 (complement).

Programs

Formula

a(n) = floor(n*sqrt(3)). - Reinhard Zumkeller, Jan 20 2010
a(n) = 2 * floor(n * (sqrt(3) - 1)) + floor(n * (2 - sqrt(3))) + 1. - Miko Labalan, Dec 03 2016

A171971 Integer part of the area of an equilateral triangle with side length n.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 35, 43, 52, 62, 73, 84, 97, 110, 125, 140, 156, 173, 190, 209, 229, 249, 270, 292, 315, 339, 364, 389, 416, 443, 471, 500, 530, 561, 592, 625, 658, 692, 727, 763, 800, 838, 876, 916, 956, 997, 1039, 1082, 1126, 1170, 1216, 1262, 1309
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

The Beatty sequence of sqrt(3)/4 starts 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7,... for n>=1. This sequence here subsamples the Beatty sequence at the positions of the squares. - R. J. Mathar, Dec 02 2012

Crossrefs

Programs

Formula

a(n) = floor(n^2 * sqrt(3) / 4) = A308358(n^2).
a(n)*A171974(n)/3 <= A171973(n);
A171970(n)*A004526(n) <= a(n).

A171972 Greatest integer k such that k/n^2 < sqrt(3).

Original entry on oeis.org

0, 1, 6, 15, 27, 43, 62, 84, 110, 140, 173, 209, 249, 292, 339, 389, 443, 500, 561, 625, 692, 763, 838, 916, 997, 1082, 1170, 1262, 1357, 1456, 1558, 1664, 1773, 1886, 2002, 2121, 2244, 2371, 2501, 2634, 2771, 2911, 3055, 3202, 3353, 3507, 3665, 3826, 3990, 4158
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

Integer part of the surface area of a regular tetrahedron with edge length n.
A171970(n)*A005843(n) <= a(n);
a(n) <= 4*A171971(n); 0 <= a(n) - 4*A171971(n) < 4.

Crossrefs

Programs

  • Haskell
    a171972 = floor . (* sqrt 3) . fromInteger . a000290
    -- Reinhard Zumkeller, Dec 15 2012
  • Mathematica
    z = 120; r = Sqrt[3];
    Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *)
    Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *)
    Table[Round[r*n^2], {n, 0, z}]; (* A070169. -  Clark Kimberling, Oct 11 2017 *)

Formula

a(n) = floor(n^2 * sqrt(3)).
a(n) = A022838(n^2);
a(n) = A293410(n) - 1 for n > 0.

A172475 a(n) = floor(n*sqrt(3)/2).

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 58, 59, 60, 61, 62
Offset: 0

Views

Author

Vincenzo Librandi, Feb 04 2010

Keywords

Programs

  • Magma
    [Floor(n*Sqrt(3)/2): n in [0..80]]; // Vincenzo Librandi, Aug 01 2013
  • Mathematica
    With[{c = Sqrt[3]/2}, Floor[c #] &/@ Range[0, 90]]  (* Harvey P. Dale, Feb 07 2011 *)

Formula

a(n) = A171970(n). [R. J. Mathar, Feb 05 2010]

A325732 First term of n-th difference sequence of (floor(k*r)), r = sqrt(3/4), k >= 0.

Original entry on oeis.org

0, 1, -1, 1, -1, 1, -1, 0, 7, -35, 119, -329, 791, -1715, 3430, -6419, 11319, -18767, 28763, -38759, 38759, 1, -149228, 572057, -1615429, 3979001, -9014851, 19251001, -39309301, 77558760, -149239771, 282712561, -532577025, 1008032953, -1934671809, 3787949521
Offset: 1

Views

Author

Clark Kimberling, May 20 2019

Keywords

Crossrefs

Cf. A325664. Inverse binomial Transform of A171970 and A172475.
Cf. A010527 (sqrt(3/4)).

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[Sqrt[3/4]*n], {n, 0, 50}], n]], {n, 1, 50}]

A194082 Sum{floor(sqrt(3)*k/2) : 1<=k<=n}.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 208, 227, 247, 268, 290, 313, 337, 362, 387, 413, 440, 468, 497, 527, 558, 590, 622, 655, 689, 724, 760, 797, 835, 873, 912, 952, 993, 1035, 1078, 1122, 1167, 1212
Offset: 1

Views

Author

Clark Kimberling, Aug 17 2011

Keywords

Comments

Partial sums of A171970.
Comment from R. J. Mathar, Dec 02 2012 (Start):
a(n-1) is the number of unit squares regularly packed into the isosceles triangle of edge length n.
The triangle may be aligned with the Cartesian axes by putting its bottom edge on the horizontal axis, so its vertices are at (x,y) = (0,0), (n,0) and (n/2,sqrt(3)*n/2), see A010527.
The area inside the triangle is sqrt(3)*n^2/4 = A120011*n^2. There is an obvious upper limit of floor(sqrt(3)*n^2/4) = A171971(n) to the count of non-overlapping unit squares inside this triangle.
Regular packing: We place the first row of unit squares so they touch the bottom edge of the triangle. Their number is limited by the length of the horizontal section of the line y=1 inside the triangle, n-2*y/sqrt(3), which touches all of these first-row squares at their top.
The number of unit squares in the next row, between y=1 and y=2, is limited by the length of the horizontal section of the line y=2 inside the triangle, n-2*y/sqrt(3). Continuing, in row y=1, 2, ... we insert floor(n-2*y/sqrt(3)) unit squares, all with the same orientation.
The total number of squares is sum_{ y=1, 2, ..., floor(n*sqrt(3)/2) } floor( n-2*y/sqrt(3) ), and resummation yields, up to an index shift, this sequence here.
(End)

Crossrefs

Cf. A171970.

Programs

  • Mathematica
    r = Sqrt[3]/2;
    c[k_] := Sum[Floor[j*r], {j, 1, k}];
    Table[c[k], {k, 1, 90}]
  • PARI
    a(n)=sum(k=1,n,sqrtint(3*k^2\4)) \\ Charles R Greathouse IV, Jan 06 2013
Showing 1-6 of 6 results.