A172086
Numerators of sum (C(n) = A051716/A051717) + (1 followed by first differences A172083/A051717 of Bernoulli numbers).
Original entry on oeis.org
2, -2, 1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367, -2577687858367
Offset: 0
A176511
From Bernoulli twin numbers to Catalan numbers arrays (*).First part.We consider array, from Bernoulli twin numbers A051716/A051717 mixed with their companion A172083/A051717 BTC(n)=1,1,-1/2,-3/2,-1/3,2/3,-1/6,-1/6, and successive differences ,named BTC1. a(n) are numerators of BTC(n).Denominators are (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
Original entry on oeis.org
1, 1, -1, -3, -1, 2, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
Offset: 0
A176784
From Bernoulli twin numbers to Catalan numbers arrays.Second part.Consider array from companion of Bernoulli twin numbers A172083/A051717 mixed with A051716/A051717 BCT(n)=1,1,-3/2,-1/2,2/3,-1/3,-1/6,-1/6, with successive differences,named BCT1.a(n) are numerators of BCT(n).Denominators (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
Original entry on oeis.org
1, 1, -3, -1, 2, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
Offset: 0
A051717
1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).
Original entry on oeis.org
1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
Offset: 0
Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
-
f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
function A051717(n)
if n eq 0 then return 1;
elif (n mod 2) eq 0 then return Denominator(f(n));
else return Denominator(-f(n));
end if;
end function;
[A051717(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
-
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
-
c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n,0,53}] (* Jean-François Alcover, Dec 19 2011 *)
Join[{1},Denominator[Total/@Partition[BernoulliB[Range[0,60]],2,1]]] (* Harvey P. Dale, Mar 09 2013 *)
Join[{1},Denominator[Differences[BernoulliB[Range[0,60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
-
a(n)=if(n<3,n+1,denominator(bernfrac(n)-bernfrac(n-1))) \\ Charles R Greathouse IV, May 18 2015
-
def f(n): return bernoulli(n)+bernoulli(n-1)
def A051717(n):
if (n==0): return 1
elif (n%2==0): return denominator(f(n))
else: return denominator(-f(n))
[A051717(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
Showing 1-4 of 4 results.
Comments