A172136
Number of ways to place 5 nonattacking knights on an n X n board.
Original entry on oeis.org
0, 0, 2, 340, 9386, 97580, 649476, 3184708, 12472084, 41199404, 119171110, 309957412, 739123094, 1639655452, 3422020324, 6778432292, 12833460256, 23356032940, 41051290730, 69954580804
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
CoefficientList[Series[2x^2(74 x^15 -518x^14 +1110x^13 +1046x^12 -11332x^11 + 29950x^10 -42430x^9 +32476x^8 -11684x^7 -1000x^6 +15021x^5 -18443x^4 -6352x^3 - 2878x^2 -159x -1)/(x-1)^11, {x,0,40}], x] (* Vincenzo Librandi, May 02 2013 *)
-
[0,0,2,340,9386,97580,649476] + [(n^10 -90*n^8 +240*n^7 +3235*n^6 - 16320*n^5 -40530*n^4 +396480*n^3 -231656*n^2 -3359520*n +6509280)/120 for n in (8..50)] # G. C. Greubel, Apr 19 2022
A176886
Number of ways to place 6 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 16, 1960, 53744, 692320, 5599888, 33001664, 154215760, 603563504, 2052729728, 6229649352, 17202203680, 43870041520, 104531112928, 234870173248, 501360888160
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
- Index entries for linear recurrences with constant coefficients, signature (6, -8, -22, 69, -8, -176, 168, 182, -364, 0, 364, -182, -168, 176, 8, -69, 22, 8, -6, 1).
-
CoefficientList[Series[- 8 x^3 (90 x^15 + 1332 x^14 + 15417 x^13 + 93042 x^12 + 372376 x^11 + 983864 x^10 + 1834807 x^9 + 2423054 x^8 + 2310242 x^7 + 1568260 x^6 + 748519 x^5 + 239742 x^4 + 48236 x^3 + 5264 x^2 + 233 x + 2) / ((x - 1)^13 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A172228
Number of ways to place 5 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 1, 304, 10741, 127960, 870589, 4197456, 16005187, 51439096, 145085447, 369074128, 863338777, 1883786680, 3875953561, 7583888944, 14206566327, 25617069208, 44663199283, 75572017136, 124485188701, 200156902936, 314851577749, 485484612496, 735056106571, 1094434774968
Offset: 1
-
CoefficientList[Series[x^2 (6 x^11 - 26 x^10 - 93 x^9 + 527 x^8 + 490 x^7 - 6710 x^6 + 13630 x^5 - 3954 x^4 - 26364 x^3 - 7452 x^2 - 293 x - 1) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A201862
Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.
Original entry on oeis.org
1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0
-
knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
*Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
*Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]
A187239
Number of ways to place 7 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 440, 38368, 1022320, 14082528, 126490352, 837543200, 4412818240, 19447224864, 74255991784, 251997948736, 774861621936, 2191005028672, 5764306674400, 14243327787456, 33309659739904, 74194554880960, 158241369977880, 324605935279648, 642894402918768
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- E. Weisstein, Bishops Problem, mathWorld.
- Index entries for linear recurrences with constant coefficients, signature (6, -6, -34, 84, 42, -322, 162, 603, -708, -540, 1260, 0, -1260, 540, 708, -603, -162, 322, -42, -84, 34, 6, -6, 1).
-
CoefficientList[Series[- 8 x^4 (630 x^18 + 10620 x^17 + 153525 x^16 + 1211058 x^15 + 6621390 x^14 + 24647178 x^13 + 66958554 x^12 + 133891418 x^11 + 202680754 x^10 + 232634698 x^9 + 204008900 x^8 + 135332502 x^7 + 67245306 x^6 + 24326718 x^5 + 6174582 x^4 + 1024222 x^3 + 99344 x^2 + 4466 x + 55) / ((x - 1)^15 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
A201246
Number of ways to place 5 non-attacking ferses on an n X n board.
Original entry on oeis.org
0, 0, 12, 780, 16286, 159452, 992412, 4567836, 16959488, 53617596, 149618794, 377841356, 879314442, 1911495356, 3922051616, 7657895196, 14321764860, 25791609308, 44921419134, 75946019596, 125016699158, 200899440924, 315872975684, 486869916572, 736910896536
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, p.415
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
-
CoefficientList[Series[2 x^2 (11 x^11 - 135 x^10 + 549 x^9 - 993 x^8 + 1172 x^7 - 2968 x^6 + 7085 x^5 - 4715x^4 - 10613 x^3 - 4183 x^2- 324 x - 6)/(x-1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)
A172140
Number of ways to place 5 nonattacking zebras on an n X n board.
Original entry on oeis.org
0, 0, 126, 2032, 20502, 160696, 929880, 4117520, 15037036, 47368960, 132577826, 336828368, 789558314, 1729320120, 3574328936, 7027309888, 13226773092, 23959787480, 41954706558, 71276149776, 117848892710, 190142197976
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
CoefficientList[Series[2x^2(100x^19 -648x^18 +1450x^17 -2126x^16 +10452x^15 - 43872x^14 +92798x^13 -100834x^12 +56460x^11 -61636x^10 +182288x^9 -303224x^8 + 275038x^7 -128982x^6 +21681x^5 +1933x^4 -13072x^3 -2540x^2 -323x-63)/(x-1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
[0,0,126,2032,20502,160696,929880,4117520,15037036,47368960,132577826] + [(n^10 -90*n^8 +400*n^7 +2915*n^6 -26880*n^5 +2430*n^4 +609920*n^3 - 1517496*n^2 -4188480*n +16581120)/120 for n in (12..50)] # G. C. Greubel, Apr 19 2022
A177758
Number of ways to place 5 nonattacking bishops on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 120, 6912, 52920, 466944, 1905120, 8647680, 25613280, 81838080, 198764280, 510478080, 1082161080, 2393997312, 4594961280, 9120190464, 16225246080, 29656350720, 49689816120, 85128088320, 135870624120
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
- Index entries for linear recurrences with constant coefficients, signature (2, 8, -18, -27, 72, 48, -168, -42, 252, 0, -252, 42, 168, -48, -72, 27, 18, -8, -2, 1).
-
CoefficientList[Series[- 24 x^4 (5 x^14 + 406 x^13 + 1333 x^12 + 14880 x^11 + 24307 x^10 + 97498 x^9 + 95187 x^8 + 175328 x^7 + 100307 x^6 + 93018 x^5 + 28147 x^4 + 12832 x^3 + 1589 x^2 + 278 x + 5) / ((x - 1)^11 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A187240
Number of ways to place 8 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 32, 12944, 867328, 22522960, 328097824, 3209594096, 23460698496, 137045115696, 670158151296, 2835083100640, 10634260782464, 36033282628832, 111923478184128, 322412415716896, 869530617762304, 2212626780591008, 5346773160475488, 12336574243905648, 27303885052866048
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- E. Weisstein, Bishops Problem, MathWorld
- Index entries for linear recurrences with constant coefficients, signature (6, -4, -46, 95, 116, -496, 44, 1331, -990, -2068, 2838, 1683, -4488, 0, 4488, -1683, -2838, 2068, 990, -1331, -44, 496, -116, -95, 46, 4, -6, 1).
-
CoefficientList[Series[- 16 x^4 (2520 x^22 + 47160 x^21 + 808884 x^20 + 7825113 x^19 + 54648810 x^18 + 265795497 x^17 + 965510650 x^16 + 2638742416 x^15 + 5598377728 x^14 + 9280070520 x^13 + 12189441400 x^12 + 12689244954 x^11 + 10499675700 x^10 + 6853251794 x^9 + 3501200340 x^8 + 1373620536 x^7 + 404231224 x^6 + 85610168 x^5 + 12313860 x^4 + 1085765 x^3 + 49362 x^2 + 797 x + 2) / ((x - 1)^17 (x + 1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
A187241
Number of ways to place 9 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 1600, 389312, 22057472, 565532992, 8611750848, 90564534336, 720227187456, 4603893554496, 24675964279680, 114402835995392, 469601097840640, 1737913582100864, 5882030372643968, 18417596366384512, 53854324059153920, 148209412582029184, 386390343290393024, 959556901097413696
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- Index entries for linear recurrences with constant coefficients, signature (6, -2, -58, 102, 214, -690, -234, 2418, -962, -5226, 4862, 7150, -11154, -5434, 16302, 0, -16302, 5434, 11154, -7150, -4862, 5226, 962, -2418, 234, 690, -214, -102, 58, 2, -6, 1).
-
CoefficientList[Series[- 64 x^5 (5670 x^25 + 116100 x^24 + 2282283 x^23 + 25883910 x^22 + 220244661 x^21 + 1330673229 x^20 + 6121839129 x^19 + 21511823232 x^18 + 59645434477 x^17 + 131494649245 x^16 + 234424379246 x^15 + 339339084372 x^14 + 401937236082 x^13 + 389328811002 x^12 + 308645316626 x^11 + 199052247464 x^10 + 103780570480 x^9 + 43151321222 x^8 + 14078209111 x^7 + 3508317590 x^6 + 644755881 x^5 + 82579449 x^4 + 6782181 x^3 + 308200 x^2 + 5933 x + 25) / ((x - 1)^19 (x + 1)^13), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
Showing 1-10 of 13 results.
Comments