cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173127 a(n) = sinh((2n-1)*arcsinh(3)).

Original entry on oeis.org

-3, 3, 117, 4443, 168717, 6406803, 243289797, 9238605483, 350823718557, 13322062699683, 505887558869397, 19210405174337403, 729489509065951917, 27701390939331835443, 1051923366185543794917, 39945386524111332371403
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Comments

Numbers n such that ((n^2 + 1)/10) is a square. - Vincenzo Librandi, Jan 02 2012

Crossrefs

Programs

  • Magma
    [-3] cat [n: n in [0..10^7]|IsSquare((n^2+1)/10)]; // Vincenzo Librandi, Jan 02 2012
    
  • Mathematica
    LinearRecurrence[{38,-1},{-3,3},30] (* Harvey P. Dale, Jan 14 2015 *)
  • Python
    from itertools import islice
    def A173127_gen(): # generator of terms
        x, y = -30, 10
        while True:
            yield x//10
            x, y = x*19+y*60, x*6+y*19
    A173127_list = list(islice(A173127_gen(),20)) # Chai Wah Wu, Apr 24 2025

Formula

a(n) = (1/2)*((-3+sqrt(10))*(19+6*sqrt(10))^n + (-3-sqrt(10))*(19-6*sqrt(10))^n).
a(n) = -a(-n+1).
G.f.: -3*(1-39*x)/(1-38*x+x^2). - Bruno Berselli, Jan 03 2011
E.g.f.: exp(19*x)*(-3*cosh(6*sqrt(10)*x) + sqrt(10)*sinh(6*sqrt(10)*x)). - Stefano Spezia, Apr 24 2025