A173127 a(n) = sinh((2n-1)*arcsinh(3)).
-3, 3, 117, 4443, 168717, 6406803, 243289797, 9238605483, 350823718557, 13322062699683, 505887558869397, 19210405174337403, 729489509065951917, 27701390939331835443, 1051923366185543794917, 39945386524111332371403
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Crossrefs
Programs
-
Magma
[-3] cat [n: n in [0..10^7]|IsSquare((n^2+1)/10)]; // Vincenzo Librandi, Jan 02 2012
-
Mathematica
LinearRecurrence[{38,-1},{-3,3},30] (* Harvey P. Dale, Jan 14 2015 *)
-
Python
from itertools import islice def A173127_gen(): # generator of terms x, y = -30, 10 while True: yield x//10 x, y = x*19+y*60, x*6+y*19 A173127_list = list(islice(A173127_gen(),20)) # Chai Wah Wu, Apr 24 2025
Formula
a(n) = (1/2)*((-3+sqrt(10))*(19+6*sqrt(10))^n + (-3-sqrt(10))*(19-6*sqrt(10))^n).
a(n) = -a(-n+1).
G.f.: -3*(1-39*x)/(1-38*x+x^2). - Bruno Berselli, Jan 03 2011
E.g.f.: exp(19*x)*(-3*cosh(6*sqrt(10)*x) + sqrt(10)*sinh(6*sqrt(10)*x)). - Stefano Spezia, Apr 24 2025
Comments