A173129
a(n) = cosh(2 * n * arccosh(n)).
Original entry on oeis.org
1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
Offset: 0
Cf.
A001079,
A037270,
A053120 (Chebyshev polynomial),
A058331,
A115066,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173148.
-
seq(orthopoly[T](2*n,n), n=0..50); # Robert Israel, Dec 27 2018
-
Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
-
{a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018
A173128
a(n) = cosh(2*n*arcsinh(n)).
Original entry on oeis.org
1, 3, 161, 27379, 9478657, 5517751251, 4841332221601, 5964153172084899, 9814664424981012481, 20791777842234580902499, 55106605639755476546020001, 178627672869645203363556318483, 695165908550906808156689590141441
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173129,
A173174.
-
seq(expand( (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n))), n=0..30); # Robert Israel, Apr 05 2016
-
Round[Table[Cosh[2 n ArcSinh[n]], {n, 0, 20}]] (* Artur Jasinski *)
Round[Table[1/2 (x - Sqrt[1 + x^2])^(2 x) + 1/2 (x + Sqrt[1 + x^2])^(2 x), {x, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(n, 1, 2*n^2+1)} \\ Seiichi Manyama, Dec 29 2018
A173130
a(n) = Cosh[(2 n - 1) ArcCosh[n]].
Original entry on oeis.org
0, 1, 26, 3363, 937444, 456335045, 343904160606, 371198523608647, 543466014742175624, 1036834190110356583689, 2499384905955651114739810, 7429238104512325157021090411, 26695718139185294187938997247212
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128.
A173131
a(n) = (Cosh[(2n-1)ArcSinh[n]])^2.
Original entry on oeis.org
1, 2, 1445, 19740250, 1361599599377, 298514762397852026, 160545187370375075046277, 179656719395983409634002348450, 373368546362937441101158606899394625
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130.
A173148
a(n) = cos(2*n*arccos(sqrt(n))).
Original entry on oeis.org
1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681
Offset: 0
Cf.
A053120 (Chebyshev polynomial),
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A322790.
-
a:=List([0..20],n->Sum([0..n],k->Binomial(2*n,2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019
-
[&+[Binomial(2*n,2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
-
Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018
A173133
a(n) = Sinh[(2n-1) ArcSinh[n]].
Original entry on oeis.org
0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131.
-
Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
A173134
a(n) = Sinh[(2n-1)ArcCosh[n]]^2.
Original entry on oeis.org
-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133.
A173170
a(n) = sin^2((2n-1)*arcsin(sqrt n)) = 1 - sin^2( (2n-1)*arccos(sqrt n)).
Original entry on oeis.org
0, 1, 50, 23763, 25421764, 48225038405, 142786923879606, 608447515452613207, 3527836867501829594888, 26710782540478226038759689, 255922222218837615280903143610, 3026917140685147530327256796600411
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151.
-
Table[Round[Sin[(2 n - 1) ArcSin[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)
A173174
a(n) = cosh(2*n*arcsinh(sqrt(n))).
Original entry on oeis.org
1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0
Cf.
A132592,
A146311 -
A146313,
A173115,
A173116 A173121,
A173127 -
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171.
-
[&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
-
A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
-
{a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
A173171
a(n) = - sin^2((2n-1)*arccos(sqrt n)) = sin^2((2n-1)*arcsin(sqrt n)) - 1.
Original entry on oeis.org
-1, 0, 49, 23762, 25421763, 48225038404, 142786923879605, 608447515452613206, 3527836867501829594887, 26710782540478226038759688, 255922222218837615280903143609, 3026917140685147530327256796600410
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170.
Showing 1-10 of 14 results.
Comments