A173148
a(n) = cos(2*n*arccos(sqrt(n))).
Original entry on oeis.org
1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681
Offset: 0
Cf.
A053120 (Chebyshev polynomial),
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A322790.
-
a:=List([0..20],n->Sum([0..n],k->Binomial(2*n,2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019
-
[&+[Binomial(2*n,2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
-
Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018
A173133
a(n) = Sinh[(2n-1) ArcSinh[n]].
Original entry on oeis.org
0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131.
-
Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
A173134
a(n) = Sinh[(2n-1)ArcCosh[n]]^2.
Original entry on oeis.org
-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133.
A173170
a(n) = sin^2((2n-1)*arcsin(sqrt n)) = 1 - sin^2( (2n-1)*arccos(sqrt n)).
Original entry on oeis.org
0, 1, 50, 23763, 25421764, 48225038405, 142786923879606, 608447515452613207, 3527836867501829594888, 26710782540478226038759689, 255922222218837615280903143610, 3026917140685147530327256796600411
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151.
-
Table[Round[Sin[(2 n - 1) ArcSin[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)
A173174
a(n) = cosh(2*n*arcsinh(sqrt(n))).
Original entry on oeis.org
1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0
Cf.
A132592,
A146311 -
A146313,
A173115,
A173116 A173121,
A173127 -
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171.
-
[&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
-
A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
-
{a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
A173171
a(n) = - sin^2((2n-1)*arccos(sqrt n)) = sin^2((2n-1)*arcsin(sqrt n)) - 1.
Original entry on oeis.org
-1, 0, 49, 23762, 25421763, 48225038404, 142786923879605, 608447515452613206, 3527836867501829594887, 26710782540478226038759688, 255922222218837615280903143609, 3026917140685147530327256796600410
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170.
A173175
a(n) = sinh^2( 2n*arcsinh(sqrt n)).
Original entry on oeis.org
0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171,
A322699.
-
A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
-
{a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
-
{a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019
A173194
a(n) = -sin^2 (2*n*arccos n) = - sin^2 (2*n*arcsin n).
Original entry on oeis.org
0, 0, 9408, 384199200, 54471499791360, 20405558846592060000, 16793517249722147195701440, 26730228454204365035835498694848, 75019085697452515216001640927169855488, 346154755746154620929434271983392498083891520
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116 A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148,
A173151,
A173170,
A173171,
A173174,
A173175,
A173176.
-
A173194 := proc(n) ((n+sqrt(n^2-1))^(2*n)-(n-sqrt(n^2-1))^(2*n))^2 ; expand(%/4) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
-
Round[Table[ -N[Sin[2 n ArcSin[n]], 100]^2, {n, 0, 15}]] (* Artur Jasinski *)
Table[FullSimplify[(-1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x))^2], {x, 0, 7}] (* Artur Jasinski, Feb 17 2010 *)
Table[(n^2-1)*ChebyshevU[2*n-1, n]^2, {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
-
{a(n) = (n^2-1)*n^2*(sum(k=0, n-1, binomial(2*n, 2*k+1)*(n^2-1)^(n-1-k)*n^(2*k)))^2} \\ Seiichi Manyama, Jan 05 2019
-
{a(n) = (n^2-1)*polchebyshev(2*n-1, 2, n)^2} \\ Seiichi Manyama, Jan 05 2019
A173150
a(n) = sinh^2 (2n*arccosh(sqrt n)).
Original entry on oeis.org
0, 0, 288, 235224, 354079488, 865363202000, 3134808545188320, 15796198853361763368, 105717380511014096025600, 907380314352243226001152800, 9718304978537581699085289156000
Offset: 0
Cf.
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173129,
A173130,
A173131,
A173133,
A173134,
A173148.
-
A173150 := proc(n) sinh(2*n*arccosh(sqrt(n))) ; %^2 ; expand(%) ; simplify(%) ;end proc: # R. J. Mathar, Feb 26 2011
-
Table[Round[-Sin[2 n ArcCos[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)
Showing 1-9 of 9 results.
Comments