cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173173 a(n) = ceiling(Fibonacci(n)/2).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 45, 72, 117, 189, 305, 494, 799, 1292, 2091, 3383, 5473, 8856, 14329, 23184, 37513, 60697, 98209, 158906, 257115, 416020, 673135, 1089155, 1762289, 2851444, 4613733, 7465176, 12078909, 19544085, 31622993, 51167078, 82790071
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2010

Keywords

Comments

Also the independence number of the n-Fibonacci cube graph. - Eric W. Weisstein, Sep 06 2017
Also the edge cover number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Dec 26 2017
Also the calque covering number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Apr 20 2019

Crossrefs

Column m=3 of A185646.

Programs

  • Magma
    [Fibonacci(n) - Floor(Fibonacci(n)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    with(combinat,fibonacci): seq(ceil(fibonacci(n)/2),n=0..33) # Mircea Merca, Jan 04 2010
  • Mathematica
    Table[Fibonacci[n] - Floor[Fibonacci[n]/2], {n, 0, 40}] (* Harvey P. Dale, Jun 09 2013 *)
    (* Start from Eric W. Weisstein, Sep 06 2017 *)
    Table[Ceiling[Fibonacci[n]/2], {n, 0, 20}]
    Ceiling[Fibonacci[Range[0, 20]]/2]
    LinearRecurrence[{1, 1, 1, -1, -1}, {1, 2, 3, 4, 7}, 20]
    CoefficientList[Series[(1 + x - 2 x^3 - x^4)/(1 - x - x^2 - x^3 + x^4 + x^5), {x, 0, 20}], x]
    (* End *)
  • PARI
    /* Continued Fraction: */
    {a(n)=my(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+4)) *CF +x*O(x^n) )); polcoeff(x*CF, n)} \\ Paul D. Hanna, Jul 08 2013
    
  • PARI
    {a(n)=polcoeff( x*(1 - x^2 - x^3) / ((1-x^3)*(1 - x - x^2 +x*O(x^n))),n)} \\ Paul D. Hanna, Jul 18 2013
    
  • PARI
    a(n)=(fibonacci(n)+1)\2 \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = ceiling(Fibonacci(n)/2). - Mircea Merca, Jan 04 2010
a(n) = a(n-1) +a(n-2) +a(n-3) -a(n-4) -a(n-5) - Joerg Arndt, Apr 24 2011
G.f.: x/(1 - x*(1-x^4)/(1 - x^2*(1-x^5)/(1 - x^3*(1-x^6)/(1 - x^4*(1-x^7)/(1 - x^5*(1-x^8)/(1 - x^6*(1-x^9)/(1 - x^7*(1-x^10)/(1 - x^8*(1-x^11)/(1 - ...))))))))), (continued fraction) - Paul D. Hanna, Jul 08 2013
G.f.: x*(1 - x^2 - x^3) / ((1-x^3)*(1 - x - x^2)). [Paul D. Hanna, Jul 18 2013, from Joerg Arndt's formula]
a(n) = A061347(n)/6 +1/3 +A000045(n)/2. - R. J. Mathar, Jul 19 2013
For n > 1, if n == 0 (mod 3) then a(n) = a(n-1) + a(n-2) - 1; otherwise a(n) = a(n-1) + a(n-2). - Franklin T. Adams-Watters, Jun 11 2018

Extensions

Name simplified using Mircea Merca's formula by Eric W. Weisstein, Sep 06 2017