cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A052898 a(n) = 2*n! + 1.

Original entry on oeis.org

3, 3, 5, 13, 49, 241, 1441, 10081, 80641, 725761, 7257601, 79833601, 958003201, 12454041601, 174356582401, 2615348736001, 41845579776001, 711374856192001, 12804747411456001, 243290200817664001
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences of the type k*n!+1: A038507 (k=1), this sequence, A173324 (k=3), A173322 (k=4), A173319 (k=5), A173314 (k=6).

Programs

  • Magma
    [2*Factorial(n) + 1: n in [0..20]]; // Vincenzo Librandi, Sep 29 2013
    
  • Magma
    [3] cat [n eq 1 select n+2 else n*Self(n-1)-n+1: n in [1..25] ]; // Vincenzo Librandi, Sep 29 2013
  • Maple
    spec := [S,{S=Union(Sequence(Z),Sequence(Z),Set(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    a[0]:=3: for n from 1 to 21 do a[n]:=n*a[n-1]-n+1; od:
    seq(a[n], n=0..20). # Sergei N. Gladkovskii, Jul 04 2012
  • Mathematica
    lst={};s=-3;Do[s+=(n+=s*n);AppendTo[lst, s], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 10 2008 *)
    FoldList[#1*#2 - #2 + 1 &, 3, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
    Table[2 n! + 1, {n, 0, 20}] (* Vincenzo Librandi, Sep 29 2013 *)

Formula

E.g.f.: (-2-exp(x)+x*exp(x))/(-1+x).
Recurrence: {a(2)=5, a(1)=3, (n^2+2*n+1)*a(n)+(-n^2-3*n-1)*a(n+1)+a(n+2)*n}
From Sergei N. Gladkovskii, Jul 04 2012: (Start)
a(0)=3; for n>0, a(n) = n*a(n-1)-n+1.
Let E(x) be the e.g.f., then
E(x)=(x*G(0)-2)/(x-1), where G(k)= 1 - 1/(x - x^3/(x^2 - (k+1)/G(k+1)));(continued fraction, 3rd kind, 3-step).
E(x)=x*G(0)/(x-1), where G(k)= 1 - 1/(x + 2*x*(x-1)*k!/(1 - 2*(x-1)*k! - x^2/(x^2 + 2*(x-1)*(k+1)!/G(k+1)))); (continued fraction, 3rd kind, 4-step).
(End).

Extensions

Definition replaced with the closed formula by Bruno Berselli, Sep 28 2013

A173322 a(n) = 4*n! + 1.

Original entry on oeis.org

5, 5, 9, 25, 97, 481, 2881, 20161, 161281, 1451521, 14515201, 159667201, 1916006401, 24908083201, 348713164801, 5230697472001, 83691159552001, 1422749712384001, 25609494822912001, 486580401635328001, 9731608032706560001, 204363768686837760001
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!+1: A038507 (k=1), A052898 (k=2), A173324 (k=3), this sequence, A173319 (k=5), A173314 (k=6).

Programs

  • Magma
    [4*Factorial(n) + 1: n in [0..25]]; // Vincenzo Librandi, Sep 29 2013
    
  • Magma
    [5] cat [n eq 1 select n+4 else n*Self(n-1)-n+1: n in [1..25] ]; // Vincenzo Librandi, Sep 29 2013
  • Maple
    a:= proc(n) if n=0 then 5 else a(n) := n*a(n-1)-n+1 fi end: seq (a(n), n=0..25);  # Sergei N. Gladkovskii, Jul 04 2012
  • Mathematica
    4*Range[0,20]!+1 (* Harvey P. Dale, Jun 26 2012 *)
    Table[4 n! + 1, {n, 0, 21}] (* Vincenzo Librandi, Sep 29 2013 *)

Formula

a(0) = 5, a(n) = n*a(n-1)-n+1. - Sergei N. Gladkovskii, Jul 04 2012

A173324 a(n) = 3*n! + 1.

Original entry on oeis.org

4, 4, 7, 19, 73, 361, 2161, 15121, 120961, 1088641, 10886401, 119750401, 1437004801, 18681062401, 261534873601, 3923023104001, 62768369664001, 1067062284288001, 19207121117184001, 364935301226496001, 7298706024529920001, 153272826515128320001
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!+1: A038507 (k=1), A052898 (k=2), this sequence, A173322 (k=4), A173319 (k=5), A173314 (k=6).

Programs

  • Magma
    [3*Factorial(n) + 1: n in [0..25]]; // Vincenzo Librandi, Sep 29 2013
    
  • Magma
    [4] cat [n eq 1 select n+3 else n*Self(n-1)-n+1: n in [1..25] ]; // Vincenzo Librandi, Sep 29 2013
  • Maple
    a:= proc(n) if n=0 then 4 else a(n):= n*a(n-1)-n+1 fi end: seq (a(n), n=0..25);  # Sergei N. Gladkovskii, Jul 04 2012
  • Mathematica
    Table[3 n! + 1, {n, 0, 30}] (* Vincenzo Librandi, Sep 29 2013 *)

Formula

a(0) = 4, a(n) = n*a(n-1)-n+1 for n>0. - Sergei N. Gladkovskii, Jul 04 2012

A173319 a(n) = 5*n! + 1.

Original entry on oeis.org

6, 6, 11, 31, 121, 601, 3601, 25201, 201601, 1814401, 18144001, 199584001, 2395008001, 31135104001, 435891456001, 6538371840001, 104613949440001, 1778437140480001, 32011868528640001, 608225502044160001, 12164510040883200001, 255454710858547200001
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!+1: A038507 (k=1), A052898 (k=2), A173324 (k=3), A173322 (k=4), this sequence, A173314 (k=6).

Programs

Formula

a(0)=6; for n>0, a(n) = n*a(n-1)-n+1. - Vincenzo Librandi, Sep 28 2013
(n-2)*a(n) - (n^2-n-1)*a(n-1) + (n-1)^2*a(n-2) = 0. [Bruno Berselli, Sep 28 2013]

A229554 a(n) = 7*n! + 1.

Original entry on oeis.org

8, 8, 15, 43, 169, 841, 5041, 35281, 282241, 2540161, 25401601, 279417601, 3353011201, 43589145601, 610248038401, 9153720576001, 146459529216001, 2489811996672001, 44816615940096001, 851515702861824001, 17030314057236480001, 357636595201966080001
Offset: 0

Views

Author

Vincenzo Librandi, Sep 30 2013

Keywords

Crossrefs

Cf. sequences of the type k*n!+1: A038507 (k=1), A052898 (k=2), A173324 (k=3), A173322 (k=4), A173319 (k=5), A173314 (k=6), this sequence (k=7).

Programs

  • Magma
    [7*Factorial(n)+1: n in [0..25]];
    
  • Magma
    [8] cat [n eq 1 select n+7 else n*Self(n-1)-n+1: n in [1..25]];
  • Mathematica
    Table[7 n! + 1, {n, 0, 25}]

Formula

a(0)=8, a(n) = n*a(n-1)-n+1.
E.g.f.: 7/(1-x)+exp(x). - Geoffrey Critzer, Sep 30 2013

A062591 Primes of the form 6*k! + 1.

Original entry on oeis.org

7, 13, 37, 30241, 241921, 2177281, 2874009601, 37362124801, 38414242234368001, 3722690410399436636160001, 3138135704799606670560043344600445747200000001
Offset: 1

Views

Author

Jason Earls, Jul 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[6Range[100]! + 1, PrimeQ] (* Alonso del Arte, Sep 27 2013 *)
  • PARI
    for(n=1,50, if(isprime(6*n!+1),print(6*n!+1)))

Formula

a(n) = A173314(A076682(n+1)). - Elmo R. Oliveira, Apr 17 2025
Showing 1-6 of 6 results.