cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A200672 Partial sums of A173862.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 13, 17, 21, 29, 37, 45, 61, 77, 93, 125, 157, 189, 253, 317, 381, 509, 637, 765, 1021, 1277, 1533, 2045, 2557, 3069, 4093, 5117, 6141, 8189, 10237, 12285, 16381, 20477, 24573, 32765, 40957, 49149, 65533, 81917, 98301, 131069, 163837, 196605
Offset: 1

Views

Author

Jeremy Gardiner, Nov 20 2011

Keywords

Comments

Partial sums of powers of 2 repeated 3 times.

Examples

			a(4) = 1+1+1+2 = 5.
		

Crossrefs

Programs

  • BASIC
    for i=0 to 12 : for j=1 to 3 : s=s+2^i : print s : next j : next i
    
  • Magma
    I:=[1,2,3,5]; [n le 4 select I[n] else Self(n-1) + 2*Self(n-3)- 2*Self(n-4): n in [1..50]]; // Vincenzo Librandi, Nov 16 2018
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) / ((x - 1) (2 x^3 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 16 2018 *)
    Accumulate[Flatten[Table[PadRight[{},3,2^n],{n,0,20}]]] (* or *) LinearRecurrence[ {1,0,2,-2},{1,2,3,5},60] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: x*(1+x+x^2) / ( (x-1)*(2*x^3-1) ). - R. J. Mathar, Nov 28 2011
a(3*n) = 3*(2^n-1) = 3*A000225(n). - Philippe Deléham, Mar 13 2013
a(n) = 2*a(n-3) + 3 for n > 3. - Yuchun Ji, Nov 16 2018

A216218 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=2 or if k-n>=2, T(1,0) = T(0,0) = T(0,1) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

With zeros omitted, this is A173862.

Examples

			Square array begins:
1, 1, 0, 0,  0,  0,  0, 0, ... row n=0
1, 2, 2, 0,  0,  0,  0, 0, ... row n=1
0, 2, 4, 4,  0,  0,  0, 0, ... row n=2
0, 0, 4, 8,  8,  0,  0, 0, ... row n=3
0, 0, 0, 8, 16, 16,  0, 0, ... row n=4
0, 0, 0, 0, 16, 32, 32, 0, ... row n=5
...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = T(n,n+1) = 2^n = A000079(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A016116(n+1) = A163403(n+1).

A200675 Powers of 2 repeated 4 times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 4096, 4096, 4096, 4096
Offset: 0

Views

Author

Jeremy Gardiner, Nov 20 2011

Keywords

Comments

Run lengths in A173922.

Examples

			a(4) = 2^1 = 2.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + x)*(1 + x^2)/(1 - 2*x^4), {x,0,50}],x] (* or *) Table[2^(Floor[n/4]), {n,0,50}] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    a(n)=2^(n\4) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Python
    def A200675(n): return 1<<(n>>2) # Chai Wah Wu, Jan 30 2023

Formula

a(n) = 2^floor(n/4).
G.f.: x*(1+x)*(1+x^2)/(1-2*x^4 ). - R. J. Mathar, Nov 21 2011

Extensions

Offset corrected by Charles R Greathouse IV, Oct 03 2016

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A338637 a(n) is the numerator of f(n) where f(n) = 1/n for n <= 2 and f(2n) = f(n-1)*f(n+1)+1, and f(2n+1) = f(n)*f(n+1)+1 for n > 2.

Original entry on oeis.org

1, 1, 3, 5, 7, 9, 19, 29, 43, 53, 79, 149, 187, 293, 583, 849, 1311, 1601, 2343, 3525, 4315, 8025, 12027, 15029, 28119, 44169, 55303, 109533, 171843, 249781, 495991, 766361, 1115087, 1361297, 2103007, 3075769, 3755239, 5651717, 8267267, 10118237
Offset: 1

Views

Author

William Phoenix Marcum, Nov 04 2020

Keywords

Examples

			f(1) = 1/1, so a(1) = 1.
f(2) = 1/2, so a(2) = 1.
f(3) = f(1) * f(2) + 1 = 3/2, so a(3) = 3.
f(4) = f(1) * f(3) + 1 = 1 * 3/2 + 1 = 5/2, so a(4) = 5.
f(5) = f(2) * f(3) + 1 = 1/2 * 3/2 + 1 = 7/4, so a(5) = 7.
f(n) for n>=1: 1, 1/2, 3/2, 5/2, 7/4, 9/4, 19/4, 29/8, 43/8, 53/8, 79/16, 149/16, 187/16, 293/32, 583/32, 849/32 ...
		

Crossrefs

Denominators are given in A173862.

Programs

  • PARI
    f(n) = if (n<=2, 1/n, my(x=n\2); if (n%2, f(x)*f(x+1)+1, f(x-1)*f(x+1)+1));
    a(n) = numerator(f(n)); \\ Michel Marcus, Nov 05 2020
Showing 1-5 of 5 results.