cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A200678 Partial sums of A200675.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 36, 44, 52, 60, 76, 92, 108, 124, 156, 188, 220, 252, 316, 380, 444, 508, 636, 764, 892, 1020, 1276, 1532, 1788, 2044, 2556, 3068, 3580, 4092, 5116, 6140, 7164, 8188, 10236, 12284, 14332, 16380, 20476, 24572, 28668, 32764
Offset: 1

Views

Author

Jeremy Gardiner, Nov 20 2011

Keywords

Comments

Partial sums of powers of 2 repeated 4 times.
The first few terms of this sequence appear in the reference by Szymczak, et al., as contour levels in intensity maps of maser emissions.

Examples

			a(5) = 1+1+1+1+2 = 6.
		

Crossrefs

Programs

  • BASIC
    for i=0 to 12 : for j=1 to 4 : s=s+2^i : print s : next j : next i

Formula

G.f.: x*(1+x)*(1+x^2) / ( (x-1)*(2*x^4-1) ). - R. J. Mathar, Nov 21 2011

A001464 Expansion of e.g.f. exp(-x - (1/2)*x^2).

Original entry on oeis.org

1, -1, 0, 2, -2, -6, 16, 20, -132, -28, 1216, -936, -12440, 23672, 138048, -469456, -1601264, 9112560, 18108928, -182135008, -161934624, 3804634784, -404007680, -83297957568, 92590134208, 1906560847424, -4221314202624, -45349267830400, 159324751301248
Offset: 0

Views

Author

Keywords

Comments

From Robert Israel, Apr 27 2017: (Start)
(-1)^n*a(n) is (the number of even involutions) - (the number of odd involutions) in the symmetric group S_n.
a(n) == (-1)^n (mod A069834(n-1)) for n >= 3.
a(n) is divisible by n-2 and by A200675(n+2). (End)

Examples

			G.f. = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 + ...
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, New York, 1945, page 32.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(-x-x^2/2) ))); // G. C. Greubel, Sep 03 2023
    
  • Maple
    f:= gfun:-rectoproc({a(n)=-a(n-1)-(n-1)*a(n-2), a(0)=1,a(1)=-1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Apr 27 2017
    a := n -> (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2): seq(simplify(a(n)), n=0..28); # Peter Luschny, Apr 30 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-x-1/2 x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 16 2011 *)
    a[ n_] := If[ n < 0, 0, HermiteH[ n, Sqrt[1/2]] (-Sqrt[1/2])^n]; (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Sum[ (-1)^k Binomial[ n, 2 k] (2 k - 1)!!, {k, 0, n/2}]]; (* Michael Somos, Jan 24 2014 *)
    Table[(-1)^(n + 1)*DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 1, 30}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • PARI
    Vec( serlaplace( exp( -x -(1/2)*x^2 + O(x^66) ) ) ) /* Joerg Arndt, Oct 13 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n\2, (-1/2)^k * n! / (k! * (n - 2*k)!)))}; /* Michael Somos, Jan 24 2014 */
    
  • SageMath
    def A001464_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x-x^2/2) ).egf_to_ogf().list()
    A001464_list(40) # G. C. Greubel, Sep 03 2023

Formula

From Benoit Cloitre, May 01 2003: (Start)
a(n) = -h(n, -1) where h(n, x) is the Hermite polynomial h(n, x) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, 2*k)*Product_{i=0..k} (2*i-1)*x^(n-2*k).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^k*C(n, 2*k)*(2k-1)!!. (End)
a(n) = -a(n-1) - (n-1)*a(n-2); a(0)=1, a(1)=-1. - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 01 2006
From Sergei N. Gladkovskii, Oct 12 2012, Nov 04 2012, Apr 17 2013, Nov 13 2013: (Start)
Continued fractions:
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(k+1)/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 + x*k + x/(1 - x*(k+1)/Q(k+1)).
G.f.: T(0)/(1+x) where T(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (1+x)^2/T(k+1)). (End)
From Michael Somos, Jan 24 2014: (Start)
Binomial transform is [1, 0, -1, 0, 3, 0, -15, 0, 105, ...] where A001147 = [1, 1, 3, 15, 105, ...].
Hankel transform is [1, -1, -2, 12, 288, -34560, -24883200, ...] where A000178 = [1, 1, 2, 12, 288, 34560, 24883200, ...].
0 = a(n) * (-a(n+1) - a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + a(n+2)) for all n in Z. (End)
a(n) = -(-1)^n*y(n,n), where y(m+1,n) = y(m,n) - (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2). - Peter Luschny, Apr 30 2017
a(n) = Sum_{k=0..n} 2^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Jan 31 2024

Extensions

a(12) and a(13) corrected by Simon Plouffe

A173922 In the sequence of nonnegative integers substitute all n by 2^floor(n/4) occurrences of (n mod 2).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[ConstantArray[Mod[n, 2], 2^Floor[n/4]], {n, 0, 20}]] (* Paolo Xausa, Apr 03 2024 *)

Formula

a(n) = A173920(n+4,4).
a(n) = A000035(A002265(A030101(n+4))).

Extensions

Sequence definition changed for clarity.

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.
Showing 1-4 of 4 results.