cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A172394 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A001464(n)*x^n.

Original entry on oeis.org

1, -1, -1, 0, 1, 0, -4, 0, 27, 0, -248, 0, 2830, 0, -38232, 0, 593859, 0, -10401712, 0, 202601898, 0, -4342263000, 0, 101551822350, 0, -2573779506192, 0, 70282204726396, 0, -2057490936366320, 0, 64291032462761955, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2010

Keywords

Comments

The e.g.f. of A001464 is exp(-x-x^2/2) = Sum_{n>=0} A001464(n)*x^n/n!.

Examples

			G.f.: A(x) = 1 - x - x^2 + x^4 - 4*x^6 + 27*x^8 - 248*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A001464:
G(x) = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 +...
while the e.g.f. of A001464 is given by:
exp(-x-x^2/2) = 1 - x + 2*x^3/3! - 2*x^4/4! - 6*x^5/5! + 16*x^6/6! +...
		

Crossrefs

Cf. A001464, A000699, A172395 (variant).

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,m!*polcoeff(exp(-x-x^2/2+x*O(x^m)),m)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G),n)}

Formula

a(2n-2) = (-1)^(n-1)*A000699(n), where A000699(n) is the number of irreducible diagrams with 2n nodes, for n>=1.
a(2n-1) = 0 for n>=2, with a(1) = -1.

A123023 a(n) = (n-1)*a(n-2), a(0)=1, a(1)=0.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Roger L. Bagula, Sep 24 2006

Keywords

Comments

a(n) is the number of ways of separating n terms into pairs. - Stephen Crowley, Apr 07 2007
a(n) is the n-th moment of the standard normal distribution. - Hal M. Switkay, Nov 06 2019
a(n) is the number of fixed-point free involutions in the symmetric group of degree n. - Nick Krempel, Feb 26 2020

Examples

			From _Gus Wiseman_, Dec 23 2018: (Start)
The a(6) = 15 ways of partitioning {1,2,3,4,5,6} into disjoint pairs:
  {{12}{34}{56}},  {{12}{35}{46}},  {{12}{36}{45}},
  {{13}{24}{56}},  {{13}{25}{46}},  {{13}{26}{45}},
  {{14}{23}{56}},  {{14}{25}{36}},  {{14}{26}{35}},
  {{15}{23}{46}},  {{15}{24}{36}},  {{15}{26}{34}},
  {{16}{23}{45}},  {{16}{24}{35}},  {{16}{25}{34}}.
(End)
		

References

  • Richard Bronson, Schaum's Outline of Modern Introductory Differential Equations, MacGraw-Hill, New York, 1973, page 107, solved problem 19.18
  • Norbert Wiener, Nonlinear Problems in Random Theory, 1958, Equation 1.31

Crossrefs

Programs

  • Magma
    a:=[1,0]; [n le 2 select a[n] else (n-2)*Self(n-2): n in [1..30]]; // Marius A. Burtea, Nov 07 2019
  • Maple
    with(combstruct): ZL2 := [S, {S=Set(Cycle(Z, card=2))}, labeled]:
    seq(count(ZL2, size=n), n=0..36); # Zerinvary Lajos, Sep 24 2007
    a := n -> ifelse(irem(n, 2) = 1, 0, 2^(n/2) * pochhammer(1/2, n/2)):
    seq(a(n), n = 0..36); # Peter Luschny, Jan 11 2023
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 0, a[n] == (n - 1) a[n - 2]}, a[n], {n, 0, 31}] (* Ray Chandler, Jul 30 2015 *)

Formula

a(n) = (1/2)*Gamma((1/2)*n + 1/2)*2^((1/2)*n)*(1 + (-1)^n)/sqrt(Pi). - Stephen Crowley, Apr 07 2007
E.g.f.: exp(x^2/2). - Geoffrey Critzer, Mar 15 2009
a(2n) = A001147(n). - R. J. Mathar, Oct 11 2011
From Sergei N. Gladkovskii, Nov 18 2012, Dec 05 2012, May 16 2013, May 24 2013, Jun 07 2013: (Start)
Continued fractions:
E.g.f.: E(0) where E(k) = 1 + x^2*(4*k+1)/((4*k+2)*(4*k+3) - x^2*(4*k+2)*(4*k+3)^2/(x^2*(4*k+3) + (4*k+4)*(4*k+5)/E(k+1))).
G.f.: 1/G(0) where G(k) = 1 - x^2*(k+1)/G(k+1).
G.f.: 1 + x^2/(1+x) + Q(0)*x^3/(1+x), where Q(k) = 1 + (2*k+3)*x/(1 - x/(x + 1/Q(k+1))).
G.f.: G(0)/2, where G(k) = 1 + 1/(1-x/(x+1/x/(2*k+1)/G(k+1))).
G.f.: (G(0) - 1)*x/(1+x) + 1, where G(k) = 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))). (End)
For n even, a(n) = A001147(n/2) = A124794(3^(n/2)). a(n) is also the coefficient of x1*...*xn in Product_{1 <= i < j <= n} (1 + xi*xj). - Gus Wiseman, Dec 23 2018
a(n) = 2^(n/2)*Pochhammer(1/2, n/2)*(n+1 mod 2). - Peter Luschny, Jan 11 2023

Extensions

Edited by N. J. A. Sloane, Jan 06 2008
Better name by Sergei N. Gladkovskii, May 24 2013
Leading term 1 dropped, offset changed, and entry edited correspondingly by Andrey Zabolotskiy, Nov 07 2019

A066325 Coefficients of unitary Hermite polynomials He_n(x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Dec 14 2001

Keywords

Comments

Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles).
Also called normalized Hermite polynomials.
He_n(x) := H_n(x/sqrt(2)) / sqrt(2)^n, with the coefficients of H_n(x) given in A060821. See the Maple program. - Wolfdieter Lang, Jan 13 2020

Examples

			Triangle begins:
    1;
    0,     1;
   -1,     0,   1;
    0,    -3,   0,    1;
    3,     0,  -6,    0,   1;
    0,    15,   0,  -10,   0,   1;
  -15,     0,  45,    0, -15,   0,  1;
    0,  -105,   0,  105,   0, -21,  0, 1;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).

Crossrefs

Row sums: A001464 (with different signs).
Row sums of absolute values: A000085.
Absolute values are given in A099174.
Cf. A159834, A001147, A060821 (Hermite H_n(x)).

Programs

  • Maple
    Q:= [seq(orthopoly[H](n,x/sqrt(2))/2^(n/2), n=0..20)]:
    seq(seq(coeff(Q[n+1],x,k),k=0..n),n=0..20); # Robert Israel, Jan 01 2016
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 1 else
    (T(n, k+2)*(k+2)*(k+1))/(k-n) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *)
  • PARI
    for(n=0, 12, for(k=0,n, print1(if(Mod(n-k,2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018
  • Python
    from sympy import Poly
    from sympy.abc import x
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return Poly(H(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Sage
    def A066325_row(n):
        T = [0]*(n+1)
        if n==1: return [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a - (k+1)*c
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u;
        return T[1:]
    for n in (1..11): A066325_row(n)  # Peter Luschny, Nov 01 2012
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018
    

Formula

T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.
E.g.f. of row polynomials {He_n(y)}: A(x, y) = exp(x*y - x^2/2).
The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014
Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018

A144299 Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,0) for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 3, 0, 0, 1, 10, 15, 0, 0, 0, 1, 15, 45, 15, 0, 0, 0, 1, 21, 105, 105, 0, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 06 2008

Keywords

Comments

T(n,k) is the number of partitions of an n-set into k nonempty subsets, each of size at most 2.
The Grosswald and Choi-Smith references give many further properties and formulas.
Considered as an infinite lower triangular matrix T, lim_{n->infinity} T^n = A118930: (1, 1, 2, 4, 13, 41, 166, 652, ...) as a vector. - Gary W. Adamson, Dec 08 2008

Examples

			Triangle begins:
  n:
  0: 1
  1: 1  0
  2: 1  1   0
  3: 1  3   0    0
  4: 1  6   3    0   0
  5: 1 10  15    0   0  0
  6: 1 15  45   15   0  0  0
  7: 1 21 105  105   0  0  0  0
  8: 1 28 210  420 105  0  0  0  0
  9: 1 36 378 1260 945  0  0  0  0  0
  ...
The row sums give A000085.
For some purposes it is convenient to rotate the triangle by 45 degrees:
  1 0 0 0 0  0  0   0   0    0    0     0 ...
    1 1 0 0  0  0   0   0    0    0     0 ...
      1 3 3  0  0   0   0    0    0     0 ...
        1 6 15 15   0   0    0    0     0 ...
          1 10 45 105 105    0    0     0 ...
             1 15 105 420  945  945     0 ...
                1  21 210 1260 4725 10395 ...
                    1  28  378 3150 17325 ...
                        1   36  630  6930 ...
                             1   45   990 ...
  ...
The latter triangle is important enough that it has its own entry, A144331. Here the column sums give A000085 and the rows sums give A001515.
If the entries in the rotated triangle are denoted by b1(n,k), n >= 0, k <= 2n, then we have the recurrence b1(n, k) = b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2).
Then b1(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1 or 2.
		

References

  • E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.

Crossrefs

Other versions of this same triangle are given in A111924 (which omits the first row), A001498 (which left-adjusts the rows in the bottom view), A001497 and A100861. Row sums give A000085.

Programs

  • Haskell
    a144299 n k = a144299_tabl !! n !! k
    a144299_row n = a144299_tabl !! n
    a144299_tabl = [1] : [1, 0] : f 1 [1] [1, 0] where
       f i us vs = ws : f (i + 1) vs ws where
                   ws = (zipWith (+) (0 : map (i *) us) vs) ++ [0]
    -- Reinhard Zumkeller, Jan 01 2014
    
  • Magma
    A144299:= func< n,k | k le Floor(n/2) select Factorial(n)/(Factorial(n-2*k)*Factorial(k)*2^k) else 0 >;
    [A144299(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    Maple code producing the rotated version:
    b1 := proc(n, k)
    option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2);
    end if;
    end proc;
    for n from 0 to 12 do lprint([seq(b1(n,k),k=0..2*n)]); od:
  • Mathematica
    T[n_,0]=0; T[1,1]=1; T[2,1]=1; T[n_, k_]:= T[n-1,k-1] + (n-1)T[n-2,k-1];
    Table[T[n,k], {n,12}, {k,n,1,-1}]//Flatten (* Robert G. Wilson v *)
    Table[If[k<=Floor[n/2],n!/((n-2 k)! k! 2^k),0], {n, 0, 12},{k,0,n}]//Flatten (* Stefano Spezia, Jun 15 2023 *)
  • SageMath
    def A144299(n,k): return factorial(n)/(factorial(n-2*k)*factorial(k)*2^k) if k <= (n//2) else 0
    flatten([[A144299(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

T(n, k) = T(n-1, k-1) + (n-1)*T(n-2, k-1).
E.g.f.: Sum_{k >= 0} Sum_{n = 0..2k} T(n,k) y^k x^n/n! = exp(y(x+x^2/2)). (The coefficient of y^k is the e.g.f. for the k-th row of the rotated triangle shown below.)
T(n, k) = n!/((n - 2*k)!*k!*2^k) for 0 <= k <= floor(n/2) and 0 otherwise. - Stefano Spezia, Jun 15 2023
From G. C. Greubel, Sep 29 2023: (Start)
T(n, 1) = A000217(n-1).
Sum_{k=0..n} T(n,k) = A000085(n).
Sum_{k=0..n} (-1)^k*T(n,k) = A001464(n). (End)

Extensions

Offset fixed by Reinhard Zumkeller, Jan 01 2014

A104556 Matrix inverse of triangle A001497 of Bessel polynomials, read by rows; essentially the same as triangle A096713 of modified Hermite polynomials.

Original entry on oeis.org

1, -1, 1, 0, -3, 1, 0, 3, -6, 1, 0, 0, 15, -10, 1, 0, 0, -15, 45, -15, 1, 0, 0, 0, -105, 105, -21, 1, 0, 0, 0, 105, -420, 210, -28, 1, 0, 0, 0, 0, 945, -1260, 378, -36, 1, 0, 0, 0, 0, -945, 4725, -3150, 630, -45, 1, 0, 0, 0, 0, 0, -10395, 17325, -6930, 990, -55, 1, 0, 0, 0, 0, 0, 10395, -62370, 51975, -13860, 1485, -66, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2005

Keywords

Comments

Exponential Riordan array [1 - x, x - x^2/2]; cf. A049403. - Peter Bala, Apr 08 2013
Also the Bell transform of (-1)^n if n<2 else 0 and the inverse Bell transform of A001147(n) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Rows begin:
   1;
  -1,  1;
   0, -3,   1;
   0,  3,  -6,    1;
   0,  0,  15,  -10,    1;
   0,  0, -15,   45,  -15,     1;
   0,  0,   0, -105,  105,   -21,     1;
   0,  0,   0,  105, -420,   210,   -28,   1;
   0,  0,   0,    0,  945, -1260,   378, -36,   1;
   0,  0,   0,    0, -945,  4725, -3150, 630, -45, 1; ...
The columns being equal in absolute value to the rows of the matrix inverse A001497:
    1;
    1,   1;
    3,   3,   1;
   15,  15,   6,   1;
  105, 105,  45,  10,  1;
  945, 945, 420, 105, 15, 1; ...
		

Crossrefs

Row sums are found in A001464 (offset 1).
Absolute row sums equal A000085.

Programs

  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - t)*Exp[x*(t - t^2/2)], {t, 0, nmax}, {x, 0, nmax}], t], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: (-1)^n if n<2 else 0, 9) # Peter Luschny, Jan 19 2016

Formula

E.g.f. : (1 - t)*exp(x*(t - t^2/2)) = 1 + (-1 + x)*t + (-3*x + x^2)*t^2/2! + ... - Peter Bala, Apr 08 2013

A362277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * binomial(n-j,j)/(n-j)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -2, 1, 1, 1, -3, -8, 1, 6, 1, 1, 1, -4, -11, 10, 41, 16, 1, 1, 1, -5, -14, 25, 106, 31, -20, 1, 1, 1, -6, -17, 46, 201, -44, -461, -132, 1, 1, 1, -7, -20, 73, 326, -299, -1952, -895, 28, 1, 1, 1, -8, -23, 106, 481, -824, -5123, -1028, 6481, 1216, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2023

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,    1,    1,     1, ...
  1,  1,  1,   1,    1,    1,     1, ...
  1,  0, -1,  -2,   -3,   -4,    -5, ...
  1, -2, -5,  -8,  -11,  -14,   -17, ...
  1, -2,  1,  10,   25,   46,    73, ...
  1,  6, 41, 106,  201,  326,   481, ...
  1, 16, 31, -44, -299, -824, -1709, ...
		

Crossrefs

Columns k=0..6 give A000012, (-1)^n * A001464(n), A293604, A362278, A362176, A362279, A362177.
Main diagonal gives A362276.
T(n,2*n) gives A362282.

Programs

  • PARI
    T(n,k) = n!*sum(j=0,n\2, (-k/2)^j/(j!*(n-2*j)!));

Formula

E.g.f. of column k: exp(x - k*x^2/2).
T(n,k) = T(n-1,k) - k*(n-1)*T(n-2,k) for n > 1.
T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j / (j! * (n-2*j)!).

A252284 Exponential generating function exp(-x-x^2-x^3/3).

Original entry on oeis.org

1, -1, -1, 3, 9, -21, -129, 111, 2577, 2871, -57249, -232101, 1175769, 11951523, -6313761, -542318841, -1778088159, 20647593711, 187318128447, -386536525389, -13793029404759, -41926398389541, 783578974052799, 7433562140085663, -22263437361406671, -767083139039850201
Offset: 0

Views

Author

Emanuele Munarini, Dec 16 2014

Keywords

Crossrefs

Programs

  • Maple
    S:= series(exp(-x-x^2-x^3/3),x,101):
    seq(coeff(S,x,j)*j!,j=0..100); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k,i]Binomial[k-i,n-2i-k]/3^i,{i,0,k}],{k,0,n}]; Table[a[n],{n,0,20}]
    With[{nn=30},CoefficientList[Series[Exp[-x-x^2-x^3/3],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 01 2021 *)
  • Maxima
    a(n) := sum((n!/k!)*(-1)^k*sum(binomial(k,i)*binomial(k-i,n-2*i-k)/3^i,i,0,k),k,0,n);
    makelist(a(n),n,0,20);
    
  • PARI
    default(seriesprecision, 40); Vec(serlaplace( exp(-x-x^2-x^3/3))) \\ Michel Marcus, Dec 17 2014

Formula

a(n) = Sum_{k=0..n} ((n!/k!)*(-1)^k * Sum_{i=0..k} C(k,i)*C(k-i,n-2*i-k)/3^i).
E.g.f.: exp(-x-x^2-x^3/3).
Recurrence: a(n+3)+a(n+2)+2*(n+2)*a(n+1)+(n+2)*(n+1)*a(n)=0.
a(n) = Sum_{k=0..n} 3^k * Stirling1(n,k) * Bell_k(-1/3), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Jan 31 2024

A334568 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(-Sum_{j=1..k} x^j/j).

Original entry on oeis.org

1, 1, -1, 1, -1, 1, 1, -1, 0, -1, 1, -1, 0, 2, 1, 1, -1, 0, 0, -2, -1, 1, -1, 0, 0, 6, -6, 1, 1, -1, 0, 0, 0, -6, 16, -1, 1, -1, 0, 0, 0, 24, -24, 20, 1, 1, -1, 0, 0, 0, 0, -24, -120, -132, -1, 1, -1, 0, 0, 0, 0, 120, -120, 540, -28, 1, 1, -1, 0, 0, 0, 0, 0, -120, -720, 1764, 1216, -1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2020

Keywords

Examples

			Square array begins:
   1,    1,    1,    1,    1,    1,    1, ...
  -1,   -1,   -1,   -1,   -1,   -1,   -1, ...
   1,    0,    0,    0,    0,    0,    0, ...
  -1,    2,    0,    0,    0,    0,    0, ...
   1,   -2,    6,    0,    0,    0,    0, ...
  -1,   -6,   -6,   24,    0,    0,    0, ...
   1,   16,  -24,  -24,  120,    0,    0, ...
  -1,   20, -120, -120, -120,  720,    0, ...
   1, -132,  540, -720, -720, -720, 5040, ...
		

Crossrefs

Columns k=1..5 give A033999, A001464, A334569, A334570, A334571.

Formula

A(0,k) = 1 and A(n,k) = - (n-1)! * Sum_{j=1..min(k,n)} A(n-j,k)/(n-j)!.

A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).

Original entry on oeis.org

1, 1, 0, 4, 4, 36, 256, 400, 17424, 784, 1478656, 876096, 154753600, 560363584, 19057250304, 220388935936, 2564046397696, 83038749753600, 327933273309184, 33173161139160064, 26222822450021376, 14475245839622726656
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Crossrefs

Cf. A111883 (unsigned row sums of A111595).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1+x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 10 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[x/(1 + x)]/Sqrt[1 - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x/(1+x))/sqrt(1-x^2))) \\ G. C. Greubel, Jun 10 2018
    
  • Python
    from sympy import hermite, Poly, sqrt
    def a(n): return sum(Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()) # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(x/(1+x))/sqrt(1-x^2).
a(n) = Sum_{m=0..n} A111595(n, m), n>=0.
A111882(n) = A001464(n)^2. - Mark van Hoeij, Nov 11 2009
D-finite with recurrence a(n) +(n-2)*a(n-1) -(n-1)*(n-2)*a(n-2) -(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Oct 05 2014

A159834 Coefficient array of Hermite_H(n, (x-1)/sqrt(2))/(sqrt(2))^n.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 0, -3, 1, -2, 8, 0, -4, 1, -6, -10, 20, 0, -5, 1, 16, -36, -30, 40, 0, -6, 1, 20, 112, -126, -70, 70, 0, -7, 1, -132, 160, 448, -336, -140, 112, 0, -8, 1, -28, -1188, 720, 1344, -756, -252, 168, 0, -9, 1
Offset: 0

Views

Author

Paul Barry, Apr 23 2009

Keywords

Comments

Exponential Riordan array [exp(-x-x^2/2), x].

Examples

			Triangle begins:
     1,
    -1,    1,
     0,   -2,    1,
     2,    0,   -3,    1,
    -2,    8,    0,   -4,    1,
    -6,  -10,   20,    0,   -5,    1,
    16,  -36,  -30,   40,    0,   -6,    1,
    20,  112, -126,  -70,   70,    0,   -7,    1,
  -132,  160,  448, -336, -140,  112,    0,   -8,    1
Production matrix is:
  -1,  1,
  -1, -1,  1,
   0, -2, -1,  1,
   0,  0, -3, -1,  1,
   0,  0,  0, -4, -1,  1,
   0,  0,  0,  0, -5, -1,  1,
   0,  0,  0,  0,  0, -6, -1,  1,
   0,  0,  0,  0,  0,  0, -7, -1,  1
		

Crossrefs

Inverse of A111062.
Equal to A066325*(A007318)^{-1}.
First column is A001464.
Row sums are (-1)^n*A001147(n) aerated.
Cf. A133314.

Programs

  • Maple
    Trow := proc(n) local b, f; b := proc(n, m) option remember; if n < m or m < 0 then
    0 elif n = 0 and m = 0 then 1 else b(n-1, m) + b(n-1, m-1) fi end:
    f := proc(n) option remember; if n = 0 then 1 elif n = 1 then -1
    else f(n-2) - f(n-1) - f(n-2)*n fi end; seq(b(n, k)*f(n-k), k=0..n) end:
    seq(Trow(n), n=0..20); # Peter Luschny, Aug 19 2018
  • Mathematica
    T[n_] := CoefficientList[Series[HermiteH[n, (x-1)/Sqrt[2]], {x, 0, 50}], x]/ (Sqrt[2])^n; Table[T[n], {n, 0, 20}] // Flatten (* G. C. Greubel, May 19 2018 *)
  • PARI
    row(n) = apply(x->round(x), Vecrev(polhermite(n, (x-1)/sqrt(2))/ (sqrt(2))^n));
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Aug 11 2018

Formula

G.f.: 1/(1-xy+x+x^2/(1-xy+x+2x^2/(1-xy+x+3x^2/(1-xy+x+4x^2/(1-... (continued fraction).
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[-(t + t^2/2)] e^(x*t).
T(n,k) = binomial(n,k) * A001464(n-k).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x - 1 - D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R, with left multiplication of the rows of this entry treated as column vectors.
exp(-(D + D^2/2)) x^n= e^(-D^2/2) (x - 1)^n = He_n(x-1) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A001464(n) and He_n(x), the unitary or normalized Hermite polynomials of A066325.
A111062 with the e.g.f. exp[t + t^2/2] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x + 1 + D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)
Showing 1-10 of 22 results. Next