A172394 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A001464(n)*x^n.
1, -1, -1, 0, 1, 0, -4, 0, 27, 0, -248, 0, 2830, 0, -38232, 0, 593859, 0, -10401712, 0, 202601898, 0, -4342263000, 0, 101551822350, 0, -2573779506192, 0, 70282204726396, 0, -2057490936366320, 0, 64291032462761955, 0
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 - x - x^2 + x^4 - 4*x^6 + 27*x^8 - 248*x^10 +... where G(x) = A(x*G(x)) is the o.g.f. of A001464: G(x) = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 +... while the e.g.f. of A001464 is given by: exp(-x-x^2/2) = 1 - x + 2*x^3/3! - 2*x^4/4! - 6*x^5/5! + 16*x^6/6! +...
Programs
-
PARI
{a(n)=local(G=sum(m=0,n,m!*polcoeff(exp(-x-x^2/2+x*O(x^m)),m)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G),n)}
Comments