cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001464 Expansion of e.g.f. exp(-x - (1/2)*x^2).

Original entry on oeis.org

1, -1, 0, 2, -2, -6, 16, 20, -132, -28, 1216, -936, -12440, 23672, 138048, -469456, -1601264, 9112560, 18108928, -182135008, -161934624, 3804634784, -404007680, -83297957568, 92590134208, 1906560847424, -4221314202624, -45349267830400, 159324751301248
Offset: 0

Views

Author

Keywords

Comments

From Robert Israel, Apr 27 2017: (Start)
(-1)^n*a(n) is (the number of even involutions) - (the number of odd involutions) in the symmetric group S_n.
a(n) == (-1)^n (mod A069834(n-1)) for n >= 3.
a(n) is divisible by n-2 and by A200675(n+2). (End)

Examples

			G.f. = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 + ...
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, New York, 1945, page 32.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(-x-x^2/2) ))); // G. C. Greubel, Sep 03 2023
    
  • Maple
    f:= gfun:-rectoproc({a(n)=-a(n-1)-(n-1)*a(n-2), a(0)=1,a(1)=-1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Apr 27 2017
    a := n -> (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2): seq(simplify(a(n)), n=0..28); # Peter Luschny, Apr 30 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-x-1/2 x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 16 2011 *)
    a[ n_] := If[ n < 0, 0, HermiteH[ n, Sqrt[1/2]] (-Sqrt[1/2])^n]; (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Sum[ (-1)^k Binomial[ n, 2 k] (2 k - 1)!!, {k, 0, n/2}]]; (* Michael Somos, Jan 24 2014 *)
    Table[(-1)^(n + 1)*DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 1, 30}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • PARI
    Vec( serlaplace( exp( -x -(1/2)*x^2 + O(x^66) ) ) ) /* Joerg Arndt, Oct 13 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n\2, (-1/2)^k * n! / (k! * (n - 2*k)!)))}; /* Michael Somos, Jan 24 2014 */
    
  • SageMath
    def A001464_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x-x^2/2) ).egf_to_ogf().list()
    A001464_list(40) # G. C. Greubel, Sep 03 2023

Formula

From Benoit Cloitre, May 01 2003: (Start)
a(n) = -h(n, -1) where h(n, x) is the Hermite polynomial h(n, x) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, 2*k)*Product_{i=0..k} (2*i-1)*x^(n-2*k).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^k*C(n, 2*k)*(2k-1)!!. (End)
a(n) = -a(n-1) - (n-1)*a(n-2); a(0)=1, a(1)=-1. - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 01 2006
From Sergei N. Gladkovskii, Oct 12 2012, Nov 04 2012, Apr 17 2013, Nov 13 2013: (Start)
Continued fractions:
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(k+1)/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 + x*k + x/(1 - x*(k+1)/Q(k+1)).
G.f.: T(0)/(1+x) where T(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (1+x)^2/T(k+1)). (End)
From Michael Somos, Jan 24 2014: (Start)
Binomial transform is [1, 0, -1, 0, 3, 0, -15, 0, 105, ...] where A001147 = [1, 1, 3, 15, 105, ...].
Hankel transform is [1, -1, -2, 12, 288, -34560, -24883200, ...] where A000178 = [1, 1, 2, 12, 288, 34560, 24883200, ...].
0 = a(n) * (-a(n+1) - a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + a(n+2)) for all n in Z. (End)
a(n) = -(-1)^n*y(n,n), where y(m+1,n) = y(m,n) - (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2). - Peter Luschny, Apr 30 2017
a(n) = Sum_{k=0..n} 2^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Jan 31 2024

Extensions

a(12) and a(13) corrected by Simon Plouffe

A369755 Expansion of e.g.f. exp( (1 - (1+x)^4)/4 ).

Original entry on oeis.org

1, -1, -2, 2, 28, 44, -464, -3088, 1408, 135872, 726976, -2959936, -67261952, -293413888, 3054389248, 52458520064, 178569842176, -3909868400128, -60465254054912, -149165881689088, 6569005278939136, 98054837101881344, 158559568611401728, -14356527387138039808
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^4)/4)))

Formula

a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * Bell_k(-1/4), where Bell_n(x) is n-th Bell polynomial.
D-finite with recurrence a(n) +a(n-1) +3*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024

A369756 Expansion of e.g.f. exp( (1 - (1+x)^5)/5 ).

Original entry on oeis.org

1, -1, -3, -1, 49, 255, -275, -13105, -83775, 170495, 8290045, 69257055, -111005135, -9684015745, -109196883795, -31470300625, 17728458119425, 276531029694975, 904537471692925, -44728487203650625, -1000823562359108175, -7110596979389965825
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^5)/5)))

Formula

a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * Bell_k(-1/5), where Bell_n(x) is n-th Bell polynomial.

A374882 Expansion of e.g.f. exp( (1 - (1 - 9*x)^(1/3))/3 ).

Original entry on oeis.org

1, 1, 7, 109, 2665, 88981, 3768391, 193406977, 11663021329, 808092594505, 63252127883431, 5519514702282901, 531266903931402937, 55912682968563924829, 6387276499619184590695, 787104141893585220839401, 104074098535487279656795681, 14697203663694095986066104337
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1-(1-9*x)^(1/3))/3)))

Formula

a(n) = Sum_{k=0..n} (-9)^(n-k) * Stirling1(n,k) * A317996(k) = (-9)^n * Sum_{k=0..n} (1/3)^k * Stirling1(n,k) * Bell_k(-1/3), where Bell_n(x) is n-th Bell polynomial.
From Vaclav Kotesovec, Aug 02 2024: (Start)
a(n) = 18*(n-2)*a(n-1) - 9*(3*n-8)*(3*n-7)*a(n-2) + a(n-3).
a(n) ~ Gamma(1/3) * 3^(2*n - 3/2) * n^(n - 5/6) / (sqrt(2*Pi) * exp(n - 1/3)) * (1 - 2*Pi/(3^(3/2)*Gamma(1/3)^2*n^(1/3))). (End)

A249015 A binomial convolution.

Original entry on oeis.org

1, 1, 5, 17, 69, 339, 1677, 9321, 55137, 343659, 2285289, 15910857, 116120781, 886308147, 7033465989, 58008074409, 495792941337, 4381170220251, 39980186877537, 376025841184329, 3640077999981189, 36224841818288547, 370112212444620861, 3878334404076375657
Offset: 0

Views

Author

Emanuele Munarini, Oct 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[(n!/k!)Sum[Binomial[k,i]Binomial[k-i+2,n-2i-k]/3^i,{i,0,k}],{k,0,n}]
    c[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k,i]Binomial[k-i,n-2i-k]/3^i,{i,0,k}],{k,0,n}]
    Table[If[n==0,1,0]+Sum[Binomial[n,k]b[k]c[n-k-1],{k,0,n-1}],{n,0,40}]
  • Maxima
    b(n) := sum((n!/k!)*sum(binomial(k,i)*binomial(k-i+2,n-2*i-k)/3^i,i,0,k),k,0,n);
    c(n) := sum((n!/k!)*(-1)^k*sum(binomial(k,i)*binomial(k-i,n-2*i-k)/3^i,i,0,k),k,0,n);
    makelist((if n=0 then 1 else 0)+sum(binomial(n,k)*b(k)*c(n-k-1),k,0,n-1),n,0,20);

Formula

a(n) = 0^0 + Sum_{k=0..n-1} binomial(n,k)*b(k)*c(n-k-1),
where the numbers b(n) = A049425(n+1) have e.g.f. (1+t)^2*exp(t+t^2+t^3/3)
and the numbers c(n) have e.g.f. exp(-(t+t^2+t^3/3)).
D-finite with recurrence: a(n+4) + n*a(n+3) - 3*(n+3)*a(n+2) - 3*(n+3)*(n+2)*a(n+1) - (n+3)*(n+2)*(n+1)*a(n) = 0.
E.g.f.: A(t) = 1+(1+t)^2*exp(t+t^2+t^3/3)*Integral_{u=0..t} exp(-(u+u^2+u^3/3)) du.
Differential equation for the e.g.f.: (1+t)*A''(t) - (2+3*t+3*t^2+t^3)*A'(t) - 3*(1+t)^2*A(t) = 0.

A331816 Irregular triangle (read by rows) of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..2*n} T(n,k) * x^k = (-1)^n * e^(x^3/3) * (((d/dx)^n) e^(-x^3/3)) for n >= 0 and 0 <= k <= 2*n.

Original entry on oeis.org

1, 0, 0, 1, 0, -2, 0, 0, 1, 2, 0, 0, -6, 0, 0, 1, 0, 0, 20, 0, 0, -12, 0, 0, 1, 0, -40, 0, 0, 80, 0, 0, -20, 0, 0, 1, 40, 0, 0, -360, 0, 0, 220, 0, 0, -30, 0, 0, 1, 0, 0, 1120, 0, 0, -1680, 0, 0, 490, 0, 0, -42, 0, 0, 1, 0, -2240, 0, 0, 9520, 0, 0, -5600, 0, 0, 952, 0, 0, -56, 0, 0, 1
Offset: 0

Views

Author

Werner Schulte, Jan 27 2020

Keywords

Comments

Let r(s;n,x) = Sum_{k=0..s*n} A(s;n,k)*x^k = (-1)^n * e^(x^(s+1)/(s+1)) * (((d/dx)^n) e^(-x^(s+1)/(s+1))) for n >= 0 and x complex and some fixed integer s >= 1. Special cases: A(1;n,k) = A066325(n,k) and A(2;n,k) is this triangle. Formula: A(s;n,k) = (Sum_{i=0..floor(k/(s+1))} (-1)^i * binomial((n+k) /(s+1),i) * binomial(n+k-(s+1)*i,n)) * (-1)^(n-(n+k)/(s+1)) * (n!) / ((s+1)^((n+k)/(s+1)) * (((n+k)/(s+1))!)) if (n+k) mod (s+1) = 0 else 0 with n >= 0 and 0 <= k <= s*n.
Recurrence: (1) A(s;n,k) = A(s;n-1,k-s) - (k+1) * A(s;n-1,k+1),
(2) r(s;n,x) = x^s * r(s;n-1,x) - ((d/dx) r(s;n-1,x)) for n > 0 with initial values A(s;0,0) = 1 = r(s;0,x) and A(s;n,k) = 0 if k < 0 or k > s*n or (n+k) mod (s+1) > 0;
E.g.f.: Sum_{n>=0} r(s;n,x)*t^n/(n!) = e^((x^(s+1)-(x-t)^(s+1))/(s+1)).
This generalization is result of a long and intensive discussion with Wolfdieter Lang. For more information see A091752.

Examples

			The irregular triangle T(n,k) starts:
n\k:  0     1    2    3    4     5   6     7   8   9  10   . . .      16
========================================================================
0  :  1
1  :  0     0    1
2  :  0    -2    0    0    1
3  :  2     0    0   -6    0     0   1
4  :  0     0   20    0    0   -12   0     0   1
5  :  0   -40    0    0   80     0   0   -20   0   0   1
6  : 40     0    0 -360    0     0 220     0   0 -30   0   0 1
7  :  0     0 1120    0    0 -1680   0     0 490   0   0 -42 0   0 1
8  :  0 -2240    0    0 9520     0   0 -5600   0   0 952   0 0 -56 0 0 1
etc.
		

Crossrefs

Row sums are (-1)^n*A252284(n).

Formula

T(n,k) = (-1)^k * (n!) * (Sum_{i=0..floor(k/3)} (-1)^i * binomial((n+k) /3,i) * binomial(n+k-3*i,n)) / (3^((n+k)/3) * ((n+k)/3)!) if (n+k) mod 3 = 0 else 0 with n >= 0 and 0 <= k <= 2*n.
Recurrence: (1) T(n,k) = T(n-1,k-2) - (k+1) * T(n-1,k+1),
(2) T(n,k) = T(n-1,k-2) - 2*(n-1)*T(n-2,k-1) + (n-1)*(n-2)*T(n-3,k),
(3) k*T(n,k) = 2*n*T(n-1,k-2) - n*(n-1)*T(n-2,k-1),
(4) p(n,x) = x^2 * p(n-1,x) - (d/dx) p(n-1,x),
(5) p(n,x) = x^2*p(n-1,x) - 2*(n-1)*x*p(n-2,x) + (n-1)*(n-2)*p(n-3,x),
(6) (d/dx) p(n,x) = 2*n*x*p(n-1,x) - n*(n-1)*p(n-2,x) for n > 0 with initial values T(0,0) = 1 = p(0,x) and T(n,k) = 0 if k < 0 or k > 2*n or (n+k) mod 3 > 0.
T(n,2*n) = 1 for n >= 0.
T(3*n,0) = -T(3*n-1,1) = 2*T(3*n-2,2) = ((3*n)!)/(3^n * (n!)) for n > 0.
The polynomials p(n,x) satisfy for n >= 0 and x complex the differential equation: 0 = (((d/dx)^3) p(n,x)) - 2*x^2*(((d/dx)^2) p(n,x)) + (x^4 + 2*(n-1)*x) * ((d/dx) p(n,x)) - (2*n*x^3-(n+3)*n) * p(n,x).
E.g.f.: Sum_{n>=0} p(n,x)*t^n/(n!) = e^((x^3-(x-t)^3)/3).
((d/dx)^m) p(n,x) = Sum_{i=0..m} (-1)^i * binomial(m,i) * p(m-i,-x) * p(n+i,x) for m,n >= 0 and x complex.
T(3*n-k,k) = A091752(n+1,k+2) for 0 <= k <= 2*n.
(-1)^(n-k) * T(n,3*k-n) = A049404(n,k) for n > 0 and (n+2)/3 <= k <= n.
Showing 1-6 of 6 results.