A175254 a(n) = Sum_{k<=n} A000203(k)*(n-k+1), where A000203(m) is the sum of divisors of m.
1, 5, 13, 28, 49, 82, 123, 179, 248, 335, 434, 561, 702, 867, 1056, 1276, 1514, 1791, 2088, 2427, 2798, 3205, 3636, 4127, 4649, 5213, 5817, 6477, 7167, 7929, 8723, 9580, 10485, 11444, 12451, 13549, 14685, 15881, 17133, 18475, 19859, 21339, 22863, 24471, 26157
Offset: 1
Examples
For n = 4: a(4) = sigma(1)*4 + sigma(2)*3 + sigma(3)*2 + sigma(4)*1 = 1*4 + 3*3 + 4*2 + 7*1 = 28.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 2209 terms from Indranil Ghosh)
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<1, [0$2], (p-> p+[numtheory[sigma](n), p[1]])(b(n-1))) end: a:= n-> b(n+1)[2]: seq(a(n), n=1..45); # Alois P. Heinz, Oct 07 2021
-
Mathematica
Table[Sum[DivisorSigma[1, k] (n - k + 1), {k, n}], {n, 45}] (* Michael De Vlieger, Nov 24 2015 *)
-
PARI
a(n) = sum(x=1, n, sigma(x)*(n-x+1)) \\ Michel Marcus, Mar 18 2013
-
Python
from math import isqrt def A175254(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*(2*s+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+2*q+1)+3*(n+1)*(2*k+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
Formula
Conjecture: a(n) = Sum_{k=0..n} A006218(n-k). - R. J. Mathar, Oct 17 2012
a(n) ~ Pi^2*n^3/36. - Vaclav Kotesovec, Sep 25 2016
G.f.: (1/(1 - x)^2)*Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
a(n) = Sum_{k=1..n} Sum_{i=1..k} k - (k mod i). - Wesley Ivan Hurt, Sep 13 2017
a(n) = A244050(n)/4. - Omar E. Pol, Jan 22 2021
Extensions
Corrected by Jaroslav Krizek, Mar 17 2010
More terms from Michel Marcus, Mar 18 2013
Comments