cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005471 Primes of the form m^2 + 3m + 9, where m can be positive or negative.

Original entry on oeis.org

7, 13, 19, 37, 79, 97, 139, 163, 313, 349, 607, 709, 877, 937, 1063, 1129, 1489, 1567, 1987, 2557, 2659, 3313, 3547, 4297, 5119, 5557, 7489, 8017, 8563, 9127, 9319, 9907, 10513, 11779, 12889, 15013, 15259, 16519, 17299, 18097, 18367, 18913, 20029
Offset: 1

Views

Author

Keywords

Comments

Primes of the form m^2 + m + 7, for some m >= 0. - Daniel Forgues, Jan 26 2020
Primes p such that 4*p - 27 is a square. Also, primes p such that the Galois group of the polynomial X^3 - p*X + p over Q is the cyclic group of order 3. See Conrad, Corollary 2.5. - Peter Bala, Oct 17 2021
From Peter Bala, Nov 18 2021: (Start)
Primes p such that the Galois group of the cubic X^3 + p*(X + 1)^2 over Q is the cyclic group C_3.
If p = m^2 + 3*m + 9 is prime then the Galois group of the cubic X^3 - m*X^2 - (m + 3)*X - 1 over Q is C_3. See Shanks.
The pair of cubics X^3 - m*p*X^2 - 3*(m+1)*p*X - (2*m+3)*p and X^3 - 2*p*X^2 + p*(p - 10)*X + p*(p - 8) also have their Galois groups over Q equal to C_3 (both cubics are irreducible over Q by Eisenstein's criteria). Apply Conrad, Corollary 2.5. (End)

Examples

			For m = -11, -10, ..., 22 the primes of the form m^2+3m+9 are 97, 79, 37, 19, 13, 7, 7, 13, 19, 37, 79, 97, 139, 163, 313, 349.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes in A027692.

Programs

  • Magma
    [a: n in [-1..150] | IsPrime(a) where a is  n^2+3*n+9]; // Vincenzo Librandi, Mar 22 2013
  • Maple
    A005471 := proc(n)
        if n = 1 then
            7;
        else
            A175282(n-1)*(3+A175282(n-1))+9 ;
        end if;
    end proc: # R. J. Mathar, Jun 06 2019
  • Mathematica
    Select[Table[n^2 + 3*n + 9, {n, -1, 200}], PrimeQ] (* T. D. Noe, Mar 21 2013 *)

Formula

a(n) == 1 (mod 6). - Zak Seidov, Mar 20 2010
a(n+1) = A175282(n)^2 + 3*A175282(n) + 9. - R. J. Mathar, Jun 06 2019

A005472 Class numbers of Shanks' simplest cubic fields.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 7, 4, 4, 4, 7, 4, 13, 7, 19, 7, 7, 7, 19, 19, 19, 16, 31, 19, 28, 19, 49, 31, 28, 31, 64, 43, 37, 127, 61, 52, 52, 52, 49, 100, 37, 112, 64, 67, 61, 76, 61, 76, 61, 61, 112, 76, 73, 67, 133, 91, 223, 169, 73, 112, 100, 169, 91, 121, 175
Offset: 1

Views

Author

Keywords

Comments

Class numbers of cubic fields with discriminants p^2, where p runs through the primes in A005471.
All terms are of the form x^2 + 3*y^2 (A003136). - Colin Barker, Nov 30 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    A175282(n)={
        local(a);
        if(n==1,
            return(1),
            a=A175282(n-1)+1;
            while(1,
                if( isprime(a^2+3*a+9),
                    return(a),
                    a++
                );
            )
        )
    };
    A005472(n)={
        local(a,bnf,L,H);
        if(n==1, return(1));
        a=A175282(n);
        bnf=bnfinit(x^3-a*x^2-(a+3)*x-1);
        L=ideallist(bnf,1,2);
        H=bnrclassnolist(bnf,L);
        return(H[1][1]);
    };
    for(n=1,80, print1(A005472(n)," ") ); /* R. J. Mathar, Jun 06 2019 */

Extensions

Name edited by Robin Visser, Dec 06 2024

A175283 Numbers k with the property that k and k^2 + 3k+9 are primes.

Original entry on oeis.org

2, 7, 11, 17, 23, 29, 31, 37, 43, 73, 101, 107, 127, 163, 179, 197, 239, 277, 281, 317, 331, 359, 367, 421, 457, 463, 487, 541, 569, 613, 617, 619, 661, 709, 739, 773, 787, 809, 823, 877, 941, 947, 953, 991, 1019, 1031, 1033, 1039, 1051, 1087, 1163, 1187
Offset: 1

Views

Author

Zak Seidov, Mar 21 2010

Keywords

Comments

Or, primes in A175282.

Crossrefs

Programs

  • Magma
    [ n: n in [0..1250] | IsPrime(n) and IsPrime(n^2+3*n+9)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[400]],PrimeQ[ #^2+3*#+9]&]
Showing 1-3 of 3 results.