cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179691 Numbers p^5*q^2*r where p, q, r are 3 distinct primes.

Original entry on oeis.org

1440, 2016, 2400, 3168, 3744, 4704, 4860, 4896, 5472, 5600, 6624, 6804, 7840, 8352, 8800, 8928, 10400, 10656, 10692, 11616, 11808, 12150, 12384, 12636, 13536, 13600, 15200, 15264, 16224, 16524, 16992, 17248, 17568, 18400, 18468, 19296, 19360
Offset: 1

Views

Author

Keywords

Crossrefs

Part of the list A178739 .. A179696 (and A030514 .. A030629, A189982 .. A189990 etc, cf. A101296). - M. F. Hasler, Jul 17 2019
Subsequence of A175746 (numbers with 36 divisors).

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,5}; Select[Range[20000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179691(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//(p**5*q**2)) for p in primerange(integer_nthroot(x,5)[0]+1) for q in primerange(isqrt(x//p**5)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+sum(primepi(x//p**7) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,8)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

Name improved by M. F. Hasler, Jul 17 2019

A175747 Numbers with 38 divisors.

Original entry on oeis.org

786432, 1310720, 1835008, 2883584, 3407872, 4456448, 4980736, 6029312, 7602176, 8126464, 9699328, 10747904, 11272192, 12320768, 13893632, 15466496, 15990784, 17563648, 18612224, 19136512, 20709376, 21757952, 23330816, 25427968, 26476544, 27000832, 28049408
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^37 and p^18*q^1, where p and q are distinct primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000000],DivisorSigma[0,#]==38&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
  • PARI
    is(n)=numdiv(n)==38 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    def A175747(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//p**18) for p in primerange(integer_nthroot(x,18)[0]+1))+primepi(integer_nthroot(x,19)[0])-primepi(integer_nthroot(x,37)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n))=38.

Extensions

Extended by T. D. Noe, May 08 2011

A274809 Numbers n such that n and n+1 both have 36 divisors.

Original entry on oeis.org

223244, 261855, 285075, 346724, 395675, 556100, 607724, 748475, 775424, 790075, 830907, 875924, 912950, 934724, 938475, 940653, 971424, 1137824, 1187900, 1239524, 1374075, 1384299, 1413675, 1462527, 1466675, 1531647
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A175746.

Programs

  • PARI
    is(n)=numdiv(n)==36 && numdiv(n+1)==36
Showing 1-3 of 3 results.