A175885 Numbers that are congruent to {1, 10} mod 11.
1, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 100, 109, 111, 120, 122, 131, 133, 142, 144, 153, 155, 164, 166, 175, 177, 186, 188, 197, 199, 208, 210, 219, 221, 230, 232, 241, 243, 252, 254, 263, 265, 274, 276, 285, 287, 296, 298
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..10000.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a175885 n = a175885_list !! (n-1) a175885_list = 1 : 10 : map (+ 11) a175885_list -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[(22*n+7*(-1)^n-11)/4: n in [1..60]]; // Vincenzo Librandi, Sep 19 2011
-
Mathematica
Rest[Flatten[{#-1,#+1}&/@(11 Range[0,50])]] (* Harvey P. Dale, Nov 05 2010 *)
-
PARI
a(n)=n%2*9 + 1 \\ Charles R Greathouse IV, Aug 01 2016
Formula
G.f.: x*(1+9*x+x^2)/((1+x)*(1-x)^2).
a(n) = (22*n + 7*(-1)^n - 11)/4.
a(n) = -a(-n+1) = a(n-2) + 11 = a(n-1) + a(n-2) - a(n-3).
a(n) = 11*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/11)*cot(Pi/11). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((22*x - 11)*exp(x) + 7*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/11).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/11)*cosec(Pi/11). (End)
Comments