A176059 Periodic sequence: Repeat 3, 2.
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 1).
Crossrefs
Programs
-
Haskell
a176059 = (3 -) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012
-
Haskell
a176059_list = cycle [3,2] -- Reinhard Zumkeller, Apr 04 2012
-
Magma
&cat[ [3, 2]: n in [0..52] ]; [ (5+(-1)^n)/2: n in [0..104] ];
-
Maple
A176059:=n->(5+(-1)^n)/2; seq(A176059(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014
-
Mathematica
a[n_] := {3, 2}[[Mod[n, 2] + 1]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jul 19 2013 *) PadRight[{},120,{3,2}] (* Harvey P. Dale, Oct 06 2019 *)
-
PARI
a(n)=3-n%2 \\ Charles R Greathouse IV, Jul 13 2016
Formula
a(n) = (5+(-1)^n)/2.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 2.
a(n) = -a(n-1)+5 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+2*(n mod 2).
G.f.: (3+2*x)/((1-x)*(1+x)).
E.g.f.: 3*cosh(x) + 2*sinh(x). - Stefano Spezia, Aug 04 2025
Comments