A177215 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31 and 64*k-63 are also products of two distinct primes.
694, 3403, 4714, 5062, 5353, 7495, 11293, 12139, 13798, 14191, 19735, 21439, 22585, 24277, 25009, 25399, 26734, 26899, 31261, 32959, 35299, 36199, 44869, 48949, 49471, 50797, 58003, 60181, 62521, 70759, 72397, 73909, 75631, 79021, 83086
Offset: 1
Keywords
Examples
694 is a term because 694 = 2*347, 2*694 - 1 = 1387 = 19*73, 4*694 - 1 = 2773 = 47*59, 8*694 - 1 = 5545 = 5*1109, 16*694 - 1 = 11089 = 13*853, 32*694 - 1 = 22177 = 67*331, and 64*694 - 1 = 44353 = 17*3609.
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63],AppendTo[lst,n]],{n,0,9!}];lst
Comments