cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177438 Continued fraction for Pi - sqrt(2).

Original entry on oeis.org

1, 1, 2, 1, 2, 77, 2, 1, 37, 1, 6, 1, 1, 1, 46, 3, 1, 1, 1, 1, 4, 2, 7, 1, 4, 1, 2, 1, 13, 1, 1, 1, 3, 2, 1, 1, 432, 1, 1, 1, 1, 3, 2, 10, 1, 1, 1, 18, 1, 1700, 1, 1, 5, 2, 9, 4, 4, 1, 1, 2, 1, 3, 27, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 32, 1, 11, 1, 2, 52, 10, 4, 1, 1, 10, 1, 1, 2, 23, 1, 3, 7, 12, 1
Offset: 0

Views

Author

Earl Bellinger (ebelling(AT)oswego.edu), May 08 2010

Keywords

Crossrefs

Cf. A177437 (decimal expansion of Pi-sqrt(2)), A001203 (continued fraction for Pi), A040000 (continued fraction expansion of sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R) - Sqrt(2)); // G. C. Greubel, Sep 29 2018
  • Maple
    with(numtheory): cfrac(Pi-(sqrt(2)),100,'quotients'); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    ContinuedFraction[Pi-Sqrt[2],100] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    default(realprecision, 100); contfrac(Pi - sqrt(2)) \\ G. C. Greubel, Sep 29 2018
    

Extensions

Edited and extended by Klaus Brockhaus, May 09 2010