cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A180369 A177771(n+3)/6! .

Original entry on oeis.org

1, 5040, 665280, 29059430400, 8892185702400, 1561112121913344000, 423456034182935917363200000, 368406749739154248105984000000, 516657398319307246483332566876160000000
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 31 2010

Keywords

Crossrefs

Cf. A178056.

Formula

a(n) = sqrt( A177926(n+3) )/720.

Extensions

Parentheses and indices corrected - R. J. Mathar, Sep 03 2010

A177926 a(n) = ((prime(n) - 1)!)^2.

Original entry on oeis.org

1, 4, 576, 518400, 13168189440000, 229442532802560000, 437763136697395052544000000, 40990389067797283140009984000000, 1263377636044591724886240423994982400000000, 92956902680071188234494975268405495542386262016000000000000
Offset: 1

Views

Author

Giovanni Teofilatto, May 15 2010

Keywords

Comments

Except first three terms, sqrt(a(n)/400) is an integer, also sqrt(a(n+1)/a(n)) is an integer. - Giovanni Teofilatto, May 16 2010

Crossrefs

Cf. A177771.

Programs

  • Mathematica
    ((Prime[Range[10]]-1)!)^2 (* Harvey P. Dale, Apr 13 2014 *)

Extensions

One more term from Harvey P. Dale, Apr 13 2014

A112660 a(n) = (p-1)! mod p^2 where p = n-th prime.

Original entry on oeis.org

1, 2, 24, 34, 10, 168, 84, 37, 183, 521, 588, 258, 655, 558, 281, 1801, 1592, 3415, 803, 4898, 802, 5766, 1659, 6229, 6789, 7271, 5870, 106, 3269, 10734, 9016, 15588, 7671, 9312, 14005, 12985, 23706, 17603, 3506, 18337, 8591, 13031, 30368, 6754, 28958, 23481, 36502, 40139
Offset: 1

Views

Author

Roger Hui, Dec 28 2005

Keywords

Comments

Related to the Wilson primes A007540, which are primes p such that (p-1)! = -1 mod p^2.

Crossrefs

Programs

  • Magma
    [Factorial(NthPrime(n)-1) mod NthPrime(n)^2 : n in [1..50]]; // G. C. Greubel, Dec 17 2019
    
  • Maple
    seq(`mod`(factorial(ithprime(n)-1), ithprime(n)^2), n = 1..50); # G. C. Greubel, Dec 17 2019
  • Mathematica
    Table[Mod[(Prime[n]-1)!, Prime[n]^2], {n, 50}] (* G. C. Greubel, Dec 17 2019 *)
  • PARI
    a(n) = my(p=prime(n)); (p-1)! % p^2; \\ Michel Marcus, Dec 17 2019
    
  • Sage
    [mod(factorial(nth_prime(n)-1), nth_prime(n)^2) for n in (1..50)] # G. C. Greubel, Dec 17 2019

Formula

a(n) = A177771(n) mod A001248(n). - Michel Marcus, Dec 17 2019

Extensions

Offset 1 and more terms from Michel Marcus, Dec 17 2019

A178056 Integers equal to ((sqrt(A177926(k)/400)/4)/600)/36 for some k.

Original entry on oeis.org

12108096, 3705077376, 650463384130560, 176440014242889965568000, 153502812391314270044160000, 215273915966378019368055236198400000, 472173196324014892561117632868122624000000, 813082244069953644990244563798907158528000000
Offset: 1

Views

Author

Giovanni Teofilatto, May 19 2010

Keywords

Crossrefs

Programs

Formula

a(n) = A177771(n+6)/1728000. - R. J. Mathar, May 24 2010

A330526 a(n) = (p-1)! mod p^3, where p = prime(n).

Original entry on oeis.org

1, 2, 24, 34, 494, 675, 4419, 4008, 4944, 13136, 21730, 23531, 14103, 41236, 86432, 77644, 64250, 148534, 243209, 141005, 384490, 373985, 29215, 101281, 543102, 109281, 154396, 1122108, 965630, 1006716, 1283207, 152876, 2147337, 1419745, 1545874, 1381045, 1108262, 123879
Offset: 1

Views

Author

Michel Marcus, Dec 17 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(p-1)mod p^3: p in PrimesUpTo(170)]; // Marius A. Burtea, Dec 18 2019
  • Maple
    f:= proc(n) local p,p3,k,r;
        p:= ithprime(n);
        p3:= p^3;
        r:= 1:
        for k from 1 to p-1 do
          r:= r*k mod p3
        od;
        r
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 18 2019
  • Mathematica
    Mod[(#-1)!,#^3]&/@Prime[Range[40]] (* Harvey P. Dale, Jan 09 2024 *)
  • PARI
    a(n) = my(p=prime(n)); (p-1)! % p^3;
    

Formula

a(n)= A177771(n) mod A030078(n).

A085460 Primes p such that there is at least one k dividing (p-1)!-1 (p <= k <= 2p).

Original entry on oeis.org

2, 43, 47, 53, 97, 367, 499, 617, 653, 661, 719, 757, 787, 971, 1093, 1109, 1163, 1249, 1283, 1447, 1579, 1657, 1663, 1733, 1993, 2099, 2141, 2251, 2287, 2311, 2333, 2557, 2591, 2593, 2621, 2879, 2917, 2957, 2963, 2971, 3253, 3301, 3499, 3719, 3733, 3767
Offset: 1

Views

Author

Benoit Cloitre, Aug 14 2003

Keywords

Crossrefs

Cf. A177771.

Programs

  • Mathematica
    q[p_] := AnyTrue[Range[p, 2*p], Divisible[(p-1)!-1, #] &]; Select[Prime[Range[300]], q] (* Amiram Eldar, Apr 22 2025 *)
  • PARI
    forprime(n=1,1000,if(sum(k=n,2*n,if(((n-1)!-1)%k,0,1))>0,print1(n,",")))

Extensions

More terms from Ray Chandler, Aug 16 2003
Showing 1-6 of 6 results.