A177885 a(n) = (1-n)^(n-1).
1, 1, -1, 4, -27, 256, -3125, 46656, -823543, 16777216, -387420489, 10000000000, -285311670611, 8916100448256, -302875106592253, 11112006825558016, -437893890380859375, 18446744073709551616, -827240261886336764177
Offset: 0
Examples
From _Paul D. Hanna_, Aug 24 2016: (Start) E.g.f.: A(x) = 1 + x - x^2/2! + 4*x^3/3! - 27*x^4/4! + 256*x^5/5! - 3125*x^6/6! + 46656*x^7/7! - 823543*x^8/8! +...+ (1-n)^(n-1)*x^n/n! +... Related series. Series_Reversion(A(x) - 1) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 +...+ (-x)^n/(n*(n-1)) +... (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..140
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See pp. 32, 34.
- Vladimir Kruchinin and Dmitry V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
- André LeClair, An electrostatic depiction of the validity of the Riemann Hypothesis and a formula for the N-th zero at large N, arXiv:1305.2613 [math-ph], 2013.
Programs
-
Magma
[(1-n)^(n-1): n in [0..30]]; // Vincenzo Librandi, May 15 2011
-
Mathematica
Join[{1,1}, Table[(1-n)^(n-1), {n, 2, 20}]] (* Harvey P. Dale, Aug 10 2012 *) nn = 18; Range[0, nn]! CoefficientList[ Series[ Exp[ ProductLog[ x]], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 23 2012 *)
-
PARI
a(n)=(1-n)^(n-1) \\ Charles R Greathouse IV, May 15 2013
-
PARI
{a(n) = my(A = 1 + serreverse( x + sum(m=2,n+2, (-x)^m/(m*(m-1)) +x^2*O(x^n)))); n!*polcoeff(A,n)} for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 24 2016
Formula
E.g.f. satisfies A(x) = exp(x/A(x)).
E.g.f. A(x) = x/LambertW(x) = exp(LambertW(x)) = 1 + x - x^2/2! + 4*x^3/3! - 27*x^4/4! + .... - Peter Bala, Jun 12 2013
E.g.f.: 1 + Series_Reversion( (1+x)*log(1+x) ). - Paul D. Hanna, Aug 24 2016
E.g.f.: 1 + Series_Reversion( x + Sum_{n>=2} (-x)^n/(n*(n-1)) ). - Paul D. Hanna, Aug 24 2016
a(n) ~ (-1)^(n+1) * exp(-1) * n^(n-1). - Vaclav Kotesovec, Sep 22 2016
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1, k-1)*n^(n-k), for n >= 1 and a(0) = 1, that is, Sum_{k=0..n}*A137452(n, k), for n >= 0. - Wolfdieter Lang, Apr 11 2023
Comments