cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A010173 Continued fraction for sqrt(107).

Original entry on oeis.org

10, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A177935 (decimal expansion), A041192/A041193 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[107],300] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2011 *)
  • Python
    from sympy import sqrt
    from sympy.ntheory.continued_fraction import continued_fraction_iterator
    def aupton(terms):
        gen = continued_fraction_iterator(sqrt(107))
        return [next(gen) for i in range(terms)]
    print(aupton(82)) # Michael S. Branicky, Oct 02 2021

Formula

G.f.: (-10*x^6 - 2*x^5 - x^4 - 9*x^3 - x^2 - 2*x - 10)/(x^6 - 1). - Chai Wah Wu, Oct 02 2021

A177934 Decimal expansion of sqrt(71216963807).

Original entry on oeis.org

2, 6, 6, 8, 6, 5, 0, 6, 6, 6, 6, 6, 6, 5, 8, 3, 3, 9, 5, 2, 8, 7, 2, 3, 9, 6, 2, 5, 7, 5, 1, 6, 2, 6, 1, 3, 0, 0, 5, 2, 1, 5, 9, 5, 9, 8, 0, 8, 1, 3, 7, 4, 6, 5, 9, 5, 8, 9, 9, 4, 3, 9, 9, 1, 5, 9, 0, 9, 6, 5, 3, 5, 0, 6, 7, 8, 3, 5, 1, 1, 4, 2, 0, 4, 4, 2, 3, 3, 6, 9, 1, 0, 8, 2, 1, 4, 5, 3, 0, 0, 8, 4, 7, 6, 7
Offset: 6

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(71216963807) is 266865 followed by (repeat 15, 533730).
sqrt(71216963807) = sqrt(11)*sqrt(19)*sqrt(107)*sqrt(179)*sqrt(17791).

Examples

			sqrt(71216963807) = 266865.06666665833952872396...
		

Crossrefs

Cf. A010468 (decimal expansion of sqrt(11)), A010475 (decimal expansion of sqrt(19)), A177935 (decimal expansion of sqrt(107)), A177936 (decimal expansion of sqrt(179)), A177937 (decimal expansion of sqrt(17791)), A177933 (decimal expansion of (232405+sqrt(71216963807))/348378).

Programs

  • Mathematica
    RealDigits[Sqrt[71216963807],10,120][[1]] (* Harvey P. Dale, Jul 31 2021 *)

A041192 Numerators of continued fraction convergents to sqrt(107).

Original entry on oeis.org

10, 21, 31, 300, 331, 962, 19571, 40104, 59675, 577179, 636854, 1850887, 37654594, 77160075, 114814669, 1110492096, 1225306765, 3561105626, 72447419285, 148455944196, 220903363481, 2136586215525, 2357489579006
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041193 (denominators), A010173 (continued fraction), A177935 (decimal expansion).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[107], 30]] (* Vincenzo Librandi, Oct 26 2013 *)

Formula

a(n) = 1924*a(n-6)-a(n-12). G.f.: -(x^11-10*x^10+21*x^9-31*x^8+300*x^7-331*x^6-962*x^5-331*x^4-300*x^3-31*x^2-21*x-10)/(x^12-1924*x^6+1). [Colin Barker, Jul 19 2012]

A041193 Denominators of continued fraction convergents to sqrt(107).

Original entry on oeis.org

1, 2, 3, 29, 32, 93, 1892, 3877, 5769, 55798, 61567, 178932, 3640207, 7459346, 11099553, 107355323, 118454876, 344265075, 7003756376, 14351777827, 21355534203, 206551585654, 227907119857, 662365825368
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041192 (numerators), A010173 (continued fraction), A177935 (decimal expansion).

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[107],30]] (* or *) LinearRecurrence[ {0,0,0,0,0,1924,0,0,0,0,0,-1},{1,2,3,29,32,93,1892,3877,5769,55798,61567,178932},30] (* Harvey P. Dale, Aug 30 2013 *)
    CoefficientList[Series[- (x^10 - 2 x^9 + 3 x^8 - 29 x^7 + 32 x^6 - 93 x^5 - 32 x^4 - 29 x^3 - 3 x^2 - 2 x - 1)/(x^12 - 1924 x^6 + 1), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 24 2013 *)

Formula

a(n) = 1924*a(n-6)-a(n-12). G.f.: -(x^10-2*x^9+3*x^8-29*x^7+32*x^6 -93*x^5 -32*x^4-29*x^3-3*x^2-2*x-1) / (x^12-1924*x^6+1). - Colin Barker, Jul 19 2012
Showing 1-4 of 4 results.