cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105899 Period 6: repeat [1, 1, 2, 2, 3, 3].

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2
Offset: 0

Views

Author

Paul Curtz, Aug 27 2007

Keywords

Crossrefs

Cf. A131555.
Cf. A178308 Decimal expansion of (111+sqrt(25277))/158. [Klaus Brockhaus, May 24 2010]

Programs

Formula

G.f.: -(3*x^4+2*x^2+1)/(x-1)/(x^2+x+1)/(x^2-x+1). a(n) = A131555(n)+1. - R. J. Mathar, Nov 14 2007
From Wesley Ivan Hurt, Jun 17 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (12-2*sqrt(3)*cos((1-4*n)*Pi/6)-6*sin((1+2*n)*Pi/6))/6. (End)
a(n) = floor(n/2) - 3*floor(n/6) + 1. - Ridouane Oudra, Sep 09 2023

Extensions

Edited by N. J. A. Sloane, Sep 15 2007
More terms from Klaus Brockhaus, May 24 2010

A178309 Decimal expansion of sqrt(25277).

Original entry on oeis.org

1, 5, 8, 9, 8, 7, 4, 2, 0, 8, 8, 6, 0, 5, 6, 2, 6, 5, 3, 7, 9, 0, 6, 0, 4, 7, 7, 1, 8, 2, 7, 6, 0, 6, 0, 3, 3, 6, 3, 9, 7, 6, 8, 1, 4, 7, 2, 6, 3, 2, 9, 8, 0, 6, 4, 2, 3, 2, 6, 0, 6, 5, 4, 7, 3, 8, 2, 6, 1, 8, 5, 4, 6, 5, 1, 1, 3, 7, 9, 6, 1, 5, 2, 8, 4, 7, 2, 3, 3, 7, 1, 7, 1, 7, 7, 6, 8, 5, 6, 9, 3, 2, 5, 2, 8
Offset: 3

Views

Author

Klaus Brockhaus, May 24 2010

Keywords

Comments

Continued fraction expansion of sqrt(25277) is 158 followed by (repeat 1, 78, 2, 78, 1, 316).
sqrt(25277) = sqrt(7)*sqrt(23)*sqrt(157).

Examples

			sqrt(25277) = 158.98742088605626537906...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010479 (decimal expansion of sqrt(23)), A178310 (decimal expansion of sqrt(157)), A178308 (decimal expansion of (111+sqrt(25277))/158).

Programs

  • Mathematica
    RealDigits[Sqrt[25277],10,120][[1]] (* Harvey P. Dale, Oct 12 2011 *)
Showing 1-2 of 2 results.