cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131555 Period 6: repeat [0, 0, 1, 1, 2, 2].

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1
Offset: 0

Views

Author

Paul Curtz, Aug 27 2007

Keywords

Crossrefs

Cf. A105899.

Programs

Formula

G.f.: (2*x^2+1)*x^2/((1-x)*(x^2+x+1)*(x^2-x+1)). - R. J. Mathar, Nov 14 2007
a(n) = floor((n mod 6)/2). - Gary Detlefs, Jul 02 2011
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n > 4; a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=2. - Harvey P. Dale, Mar 30 2012
a(n) = (3*sin(n*Pi/6) - sqrt(3)*cos(n*Pi/6)) * (2*sin(n*Pi/6) + sin(n*Pi/2))/3. - Wesley Ivan Hurt, Jun 20 2016
a(n) = floor(n/2) mod 3. - Bruno Berselli, Oct 03 2017
a(n) = floor(n/2) - 3*floor(n/6). - Ridouane Oudra, Apr 01 2023

Extensions

Edited by N. J. A. Sloane, Sep 15 2007
Formula simplified by Bruno Berselli, Sep 27 2010

A178308 Decimal expansion of (111 + sqrt(25277))/158.

Original entry on oeis.org

1, 7, 0, 8, 7, 8, 1, 1, 4, 4, 8, 4, 8, 4, 5, 7, 3, 7, 5, 8, 1, 6, 8, 3, 8, 4, 6, 3, 1, 8, 2, 0, 2, 9, 1, 3, 5, 2, 1, 5, 0, 4, 3, 1, 3, 1, 1, 7, 9, 3, 0, 2, 5, 7, 2, 2, 9, 9, 1, 1, 8, 0, 6, 7, 9, 6, 3, 6, 8, 2, 6, 2, 4, 3, 7, 4, 2, 9, 0, 8, 9, 5, 7, 4, 9, 8, 2, 4, 9, 1, 8, 8, 0, 8, 7, 1, 4, 2, 8, 4, 3, 8, 3, 0, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 24 2010

Keywords

Comments

Continued fraction expansion of (111 + sqrt(25277))/158 is A105899.

Examples

			(111 + sqrt(25277))/158 = 1.70878114484845737581...
		

Crossrefs

Cf. A105899 (continued fraction), A178309 (sqrt(25277)).

A135695 Period 6: repeat [-1, -1, -2, -2, 3, 3].

Original entry on oeis.org

-1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1, -1, -2, -2, 3, 3, -1
Offset: 0

Views

Author

Paul Curtz, Feb 24 2008

Keywords

Crossrefs

Cf. A105899.

Programs

Formula

From R. J. Mathar, Mar 31 2008: (Start)
a(n) = a(n-6) for n>5. a(n) = -a(n-2) - a(n-4) for n>3.
G.f.: -(x+1)*(3*x^2+1)/((x^2-x+1)*(x^2+x+1)). (End)
a(n) = (3*cos(n*Pi/3) - 9*cos(2*n*Pi/3) - 9*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/6. - Wesley Ivan Hurt, Jun 22 2016

Extensions

More periods from R. J. Mathar, Feb 07 2009
Showing 1-3 of 3 results.