cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178420 Partial sums of floor(2^n/3).

Original entry on oeis.org

0, 1, 3, 8, 18, 39, 81, 166, 336, 677, 1359, 2724, 5454, 10915, 21837, 43682, 87372, 174753, 349515, 699040, 1398090, 2796191, 5592393, 11184798, 22369608, 44739229, 89478471, 178956956, 357913926, 715827867, 1431655749, 2863311514
Offset: 1

Views

Author

Mircea Merca, Dec 21 2010

Keywords

Comments

Essentially the same as A011377: 0 followed by the terms of A011377. - Joerg Arndt, Apr 22 2016
Partial sums of A000975(n-1).

Examples

			a(5) = 0 + 1 + 2 + 5 + 10 = 18.
		

Crossrefs

Column k=2 of A368296.

Programs

  • Magma
    [Floor((4*2^n-3*n-4)/6): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(round((4*2^n-3*n-4)/6),n=1..50)
  • Mathematica
    f[n_] := Floor[(4 2^n - 3 n - 4)/6]; f[Range[60]] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2011 *)
    CoefficientList[Series[x / ((1 + x) (1 - 2 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    LinearRecurrence[{3,-1,-3,2},{0,1,3,8},40] (* or *) Accumulate[ Table[ Floor[ 2^n/3],{n,40}]] (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    a(n)=(4<Charles R Greathouse IV, Jul 31 2013

Formula

a(n) = A011377(n-1) for n >= 1. - Joerg Arndt, Apr 22 2016
a(n) = round((8*2^n - 6*n - 9)/12).
a(n) = floor((4*2^n - 3*n - 4)/6).
a(n) = ceiling((4*2^n - 3*n - 5)/6).
a(n) = round((4*2^n - 3*n - 4)/6).
a(n) = a(n-2) + 2^(n-1) - 1, n > 2.
From Bruno Berselli, Jan 15 2011: (Start)
a(n) = (8*2^n - 6*n - 9 + (-1)^n)/12.
G.f.: x^2/((1+x)*(1-2*x)*(1-x)^2). (End)
G.f.: Q(0)/(3*(1-x)^2), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) = 2*a(n-1) + floor(n/2) for n > 1. - Bruno Berselli, Apr 30 2014
a(n) = floor(2^(n+1)/3) - floor((n+1)/2). - Seiichi Manyama, Dec 22 2023