cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178523 The path length of the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 2, 6, 16, 36, 76, 152, 294, 554, 1024, 1864, 3352, 5968, 10538, 18478, 32208, 55852, 96420, 165800, 284110, 485330, 826752, 1404816, 2381616, 4029216, 6803666, 11468502, 19300624, 32433204, 54426364, 91216184, 152691702, 255313658, 426460288, 711634648
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The path length of a tree is the sum of the levels of all of its nodes.
This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that all but one such pair are joined by an edge; equivalently the number of "(n-1)-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young]. - Donovan Young, Oct 23 2018

Examples

			a(2)=2 because the Fibonacci tree of order 2 is /\ with path length 1 + 1. - _Emeric Deutsch_, Sep 13 2010
		

References

  • Ralph P. Grimaldi, Properties of Fibonacci trees, In Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991); Congressus Numerantium 84 (1991), 21-32. - Emeric Deutsch, Sep 13 2010
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • GAP
    a:=[0,2];;  for n in [3..35] do a[n]:=a[n-1]+a[n-2]+ 2*Fibonacci(n +1) -2; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
    
  • Magma
    [2+(2/5)*(4*n-9)*Fibonacci(n)+(2/5)*(3*n-5)*Fibonacci(n-1): n in [0..40]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: 2+((8/5)*n-18/5)*fibonacci(n)+((6/5)*n-2)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
    G := 2*z^2/((1-z)*(1-z-z^2)^2): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 35);
  • Mathematica
    Table[2 +2/5 (4n-9) Fibonacci[n] +2/5 (3n -5) Fibonacci[n-1], {n, 0, 40}] (* or *) LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 2, 6, 16}, 40] (* Harvey P. Dale, Oct 02 2016 *)
  • PARI
    vector(40, n, n--; (10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5 for n in range(40)] # G. C. Greubel, Jan 31 2019

Formula

a(n) = 2 + (2/5)*(4n-9)*F(n) + (2/5)*(3n-5)*F(n-1), where F(n) = A000045(n) (Fibonacci numbers).
a(n) = 2*A006478(n+1).
a(n) = Sum_{k=0..n-1} k*A178522(n,k).
G.f.: 2*z^2/((1-z)*(1-z-z^2)^2).
From Emeric Deutsch, Sep 13 2010: (Start)
a(0)=a(1)=0, a(n) = a(n-1)+a(n-2)+2F(n+1)-2 if n>=2; here F(j)=A000045(j) are the Fibonacci numbers (see the Grimaldi reference, Eq. (**) on p. 23).
An explicit formula for a(n) is given in the Grimaldi reference (Theorem 2).
(End)
E.g.f.: 2*exp(x) + 2*exp(x/2)*(5*(4*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(10*x - 13)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023