A178634 a(n) = 63*((10^n - 1)/9)^2.
63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1
Examples
n=1: ..................... 63 = 9 * 7; n=2: ................... 7623 = 99 * 77; n=3: ................. 776223 = 999 * 777; n=4: ............... 77762223 = 9999 * 7777; n=5: ............. 7777622223 = 99999 * 77777; n=6: ........... 777776222223 = 999999 * 777777; n=7: ......... 77777762222223 = 9999999 * 7777777; n=8: ....... 7777777622222223 = 99999999 * 77777777; n=9: ..... 777777776222222223 = 999999999 * 777777777.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
GAP
List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
-
Magma
[63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
-
Mathematica
63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
-
PARI
a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
-
Sage
[63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
Formula
G.f.: 63*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 7*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. - Elmo R. Oliveira, Aug 01 2025