cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178742 Partial sums of floor(2^n/9).

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 11, 25, 53, 109, 222, 449, 904, 1814, 3634, 7274, 14555, 29118, 58245, 116499, 233007, 466023, 932056, 1864123, 3728258, 7456528, 14913068, 29826148, 59652309, 119304632, 238609279, 477218573, 954437161
Offset: 0

Views

Author

Mircea Merca, Dec 26 2010

Keywords

Comments

Partial sums of A153234.

Examples

			a(6) = 0 + 0 + 0 + 0 + 1 + 3 + 7 = 11.
		

Crossrefs

Cf. A153234.

Programs

  • Magma
    [&+[Floor(2^k/9): k in [0..n]]: n in [0..25]];  // Bruno Berselli, Apr 26 2011
    
  • Magma
    I:=[0,0,0,0,1,4]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+4*Self(n-4)-5*Self(n-5)+2*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 26 2014
    
  • Maple
    A178742 := proc(n) add( floor(2^i/9),i=0..n) ; end proc:
  • Mathematica
    CoefficientList[Series[x^4/((1-2x)(1+x)(1-x+x^2)(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    LinearRecurrence[{4,-5,1,4,-5,2},{0,0,0,0,1,4},40] (* Harvey P. Dale, Jan 25 2015 *)
  • PARI
    vector(30, n, n--; ((4*2^n-9*n+2)/18)\1) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [floor((4*2^n-9*n+2)/18) for n in (0..30)] # G. C. Greubel, Jan 24 2019

Formula

a(n) = round((8*2^n - 18*n - 9)/36).
a(n) = floor((4*2^n - 9*n + 2)/18).
a(n) = ceiling((4*2^n - 9*n - 11)/18).
a(n) = round((4*2^n - 9*n - 4)/18).
a(n) = a(n-6) + 7*2^(n-5) - 3, n > 5.
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 4*a(n-4) - 5*a(n-5) + 2*a(n-6).
G.f.: x^4 / ( (1-2*x)*(1+x)*(1-x+x^2)*(1-x)^2 ).