cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178820 Triangle read by rows: T(n,k) = C(n+3,3) * C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 4, 10, 20, 10, 20, 60, 60, 20, 35, 140, 210, 140, 35, 56, 280, 560, 560, 280, 56, 84, 504, 1260, 1680, 1260, 504, 84, 120, 840, 2520, 4200, 4200, 2520, 840, 120, 165, 1320, 4620, 9240, 11550, 9240, 4620, 1320, 165, 220, 1980, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 220
Offset: 0

Views

Author

Harlan J. Brothers, Jun 17 2010

Keywords

Comments

The product of the tetrahedral numbers (A000292, beginning with second term) and Pascal's triangle (A007318). Also level 4 of Pascal's prism (A178819): (i+3; 3, i-j, j), i >= 0, 0 <= j <= i.

Examples

			Triangle begins:
   1;
   4,   4;
  10,  20,  10;
  20,  60,  60,  20;
  35, 140, 210, 140,  35;
		

Crossrefs

Rows sums give A001789.

Programs

  • GAP
    T:=Flat(List([0..10], n-> List([0..n], k-> Binomial(n+3, 3)* Binomial(n, k) ))); # G. C. Greubel, Jan 22 2019
  • Magma
    /* As triangle */ [[Binomial(n+3,3)*Binomial(n,k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Oct 23 2017
    
  • Maple
    T:=(n,k)->binomial(n+3,3)*binomial(n,k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    Table[Multinomial[3, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
  • PARI
    {T(n,k) = binomial(n+3, 3)*binomial(n, k)}; \\ G. C. Greubel, Jan 22 2019
    
  • Sage
    [[binomial(n+3, 3)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 22 2019
    

Formula

T(n,k) = C(n+3,3) * C(n,k), 0 <= k <= n.
For element a in A178819: a_(4, i, j) = (i+2; 3, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^4. - Ilya Gutkovskiy, Mar 20 2020