A178872 Partial sums of round(4^n/7).
0, 1, 3, 12, 49, 195, 780, 3121, 12483, 49932, 199729, 798915, 3195660, 12782641, 51130563, 204522252, 818089009, 3272356035, 13089424140, 52357696561, 209430786243, 837723144972, 3350892579889, 13403570319555, 53614281278220, 214457125112881
Offset: 0
Examples
a(3)=0+1+2+9=12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,3,4).
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Programs
-
Magma
[Floor((4*4^n+5)/21): n in [0..30]]; // Vincenzo Librandi, May 01 2011
-
Maple
A178872 := proc(n) add( round(4^i/7),i=0..n) ; end proc:
-
Mathematica
Join[{a = b = 0}, Table[c = 4^n - a - b; a = b; b = c, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *) Accumulate[Round[4^Range[0,30]/7]] (* or *) LinearRecurrence[{3,3,4},{0,1,3},30] (* Harvey P. Dale, Feb 18 2023 *)
-
PARI
a(n) = (4^(n+1)+5)\21; \\ Altug Alkan, Oct 05 2017
Formula
a(n) = round((8*4^n+1)/42) = round((4*4^n-4)/21).
a(n) = floor((4*4^n+5)/21).
a(n) = ceiling((4*4^n-4)/21).
a(n) = a(n-3) + 3*4^(n-2) = a(n-3) + A164346(n-2) for n > 2.
a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3) for n > 2.
G.f.: -x/((4*x-1)*(x^2+x+1)).
a(n+1) - 4*a(n) = A049347(n). - Paul Curtz, Jun 08 2011
Comments