cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178872 Partial sums of round(4^n/7).

Original entry on oeis.org

0, 1, 3, 12, 49, 195, 780, 3121, 12483, 49932, 199729, 798915, 3195660, 12782641, 51130563, 204522252, 818089009, 3272356035, 13089424140, 52357696561, 209430786243, 837723144972, 3350892579889, 13403570319555, 53614281278220, 214457125112881
Offset: 0

Views

Author

Mircea Merca, Dec 28 2010

Keywords

Comments

a(n) (prefixed with a 0) and its higher order differences define the following infinite array:
0, 0, 1, 3, 12, 49,..
0, 1, 2, 9, 37, 146,...
1, 1, 7, 28, 109, 439... - Paul Curtz, Jun 08 2011

Examples

			a(3)=0+1+2+9=12.
		

Crossrefs

Programs

  • Magma
    [Floor((4*4^n+5)/21): n in [0..30]]; // Vincenzo Librandi, May 01 2011
    
  • Maple
    A178872 := proc(n) add( round(4^i/7),i=0..n) ; end proc:
  • Mathematica
    Join[{a = b = 0}, Table[c = 4^n - a - b; a = b; b = c, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    Accumulate[Round[4^Range[0,30]/7]] (* or *) LinearRecurrence[{3,3,4},{0,1,3},30] (* Harvey P. Dale, Feb 18 2023 *)
  • PARI
    a(n) = (4^(n+1)+5)\21; \\ Altug Alkan, Oct 05 2017

Formula

a(n) = round((8*4^n+1)/42) = round((4*4^n-4)/21).
a(n) = floor((4*4^n+5)/21).
a(n) = ceiling((4*4^n-4)/21).
a(n) = a(n-3) + 3*4^(n-2) = a(n-3) + A164346(n-2) for n > 2.
a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3) for n > 2.
G.f.: -x/((4*x-1)*(x^2+x+1)).
a(n+1) - 4*a(n) = A049347(n). - Paul Curtz, Jun 08 2011