cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A381315 Numbers whose prime factorization exponents include exactly one 3 and no exponent greater than 3.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Subsequence of A176297 and A375072, and first differs from them at n = 20: A176297(20) = A375072(20) = 216 = 2^3 * 3^3 is not a term of this sequence.
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p+p^2+p^3) = 0.089602607198058453295... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, MemberQ[e, 3] && Count[e, _?(# < 3 &)] == Length[e] - 1]; Select[Range[600], q]
  • PARI
    isok(k) = {my(e = factor(k)[, 2]~); select(x -> x > 2, e) == [3];}

A189344 Numbers with prime factorization pq^2r^2s^2.

Original entry on oeis.org

6300, 8820, 9900, 11700, 14700, 15300, 17100, 19404, 20700, 21780, 22050, 22932, 26100, 27900, 29988, 30420, 30492, 33300, 33516, 36300, 36900, 38700, 40572, 42300, 42588, 47700, 50700, 51156, 52020, 53100, 53900, 54450, 54684, 54900
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,2}; Select[Range[90000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtint(lim\180), t1=p^2; forprime(q=2,sqrtint(lim\(12*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(2*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A189989 Numbers with prime factorization pqrs^2t^2.

Original entry on oeis.org

13860, 16380, 21420, 23100, 23940, 25740, 27300, 28980, 32340, 33660, 34650, 35700, 36036, 36540, 37620, 38220, 39060, 39780, 39900, 40950, 42900, 44460, 45540, 46620, 47124, 48300, 48510, 49980, 50820, 51660, 52668, 53550, 53820, 54180
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,2,2}; Select[Range[200000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtint(lim\420), t1=p^2; forprime(q=2,sqrtint(lim\(30*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A382208 Numbers k for which pi(bigomega(k)) = omega(k).

Original entry on oeis.org

1, 4, 9, 12, 18, 20, 24, 25, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 63, 68, 75, 76, 88, 92, 98, 99, 100, 104, 116, 117, 120, 121, 124, 135, 136, 147, 148, 152, 153, 164, 168, 169, 171, 172, 175, 180, 184, 188, 189, 196, 207, 212, 225, 232, 236, 240, 242, 244, 245
Offset: 1

Views

Author

Felix Huber, Mar 30 2025

Keywords

Comments

Numbers k for which A000720(A001222(k)) = A001221(k).
Numbers k = p_1^e_1 * ... * p_j^e_j for which pi(Sum_{i=1..j} e_i) = j where pi = A000720.

Examples

			240 = 2^4*3*5 is in the sequence because pi(Omega(240)) = pi(6) = 3 = omega(240).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A382208:=proc(n)
        option remember;
        local k;
        if n=1 then
            1
        else
            for k from procname(n-1)+1 do
                if pi(Omega(k))=Omega(k,distinct) then
                    return k
                fi
            od
        fi;
    end proc;
    seq(A382208(n),n=1..59);
    # second Maple program:
    q:= n-> (l-> is(numtheory[pi](add(i[2], i=l))=nops(l)))(ifactors(n)[2]):
    select(q, [$1..245])[];  # Alois P. Heinz, Apr 05 2025
  • Mathematica
    Select[Range[250], PrimePi[PrimeOmega[#]] == PrimeNu[#] &] (* Amiram Eldar, Apr 05 2025 *)
  • PARI
    isok(k) = primepi(bigomega(k)) == omega(k); \\ Michel Marcus, Apr 05 2025

Extensions

a(1) inserted by Michel Marcus, Apr 05 2025
Showing 1-5 of 5 results.