cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180118 a(n) = Sum_{k=1..n} (k+2)!/k! = Sum_{k=1..n} (k+2)*(k+1).

Original entry on oeis.org

0, 6, 18, 38, 68, 110, 166, 238, 328, 438, 570, 726, 908, 1118, 1358, 1630, 1936, 2278, 2658, 3078, 3540, 4046, 4598, 5198, 5848, 6550, 7306, 8118, 8988, 9918, 10910, 11966, 13088, 14278, 15538, 16870, 18276, 19758, 21318, 22958, 24680, 26486, 28378, 30358
Offset: 0

Views

Author

Gary Detlefs, Aug 10 2010

Keywords

Comments

In general, sequences of the form a(n) = sum((k+x+2)!/(k+x)!,k=1..n) have a closed form a(n) = n*(11+12*x+3*x^2+3*x*n+6*n+n^2)/3.
This sequence is related to A033487 by A033487(n) = n*a(n)-sum(a(i), i=0..n-1). - Bruno Berselli, Jan 24 2011
The minimal number of multiplications (using schoolbook method) needed to compute the matrix chain product of a sequence of n+1 matrices having dimensions 1 X 2, 2 X 3, ..., (n+1) X (n+2), respectively. - Alois P. Heinz, Jan 27 2017

Crossrefs

Programs

  • Magma
    [n*(n^2+6*n+11)/3: n in [0..45]]; // Vincenzo Librandi, Jun 15 2011
  • Mathematica
    f[n_]:=n*(n^2 + 6 n + 11)/3; f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011*)
    CoefficientList[Series[2*x*(3 - 3*x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* Vaclav Kotesovec, May 10 2019 *)
    Table[Sum[(k+1)(k+2),{k,n}],{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,6,18,38},50] (* Harvey P. Dale, Apr 21 2020 *)

Formula

a(n) = +4*a(n-1)-6*a(n-2)+4*a(n-3)-1*a(n-4) for n>=4.
a(n) = n*(n^2+6*n+11)/3.
From Bruno Berselli, Jan 24 2011: (Start)
G.f.: 2*x*(3-3*x+x^2)/(1-x)^4. [corrected by Georg Fischer, May 10 2019]
Sum(a(k), k=0..n) = 2*A005718(n) for n>0. (End)