A180119 a(n) = (n+2)! * Sum_{k = 1..n} 1/((k+1)*(k+2)).
0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000, 11802007641664880640000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 209. Book's website
- H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010 (section 10, p.45).
Programs
-
Magma
[n*Factorial(n+2)/(2*(n+2)): n in [0..25]]; // Vincenzo Librandi, Feb 20 2017
-
Maple
a:= n-> n*(n+2)!/(2*(n+2)): seq(a(n), n=0..20);
-
Mathematica
Table[n (n + 2)! / (2 (n + 2)), {n, 0, 30}] (* Vincenzo Librandi, Feb 20 2017 *)
-
PARI
a(n) = (n+2)! * sum(k=1, n,1/((k+1)*(k+2))); \\ Michel Marcus, Jan 10 2015
-
PARI
apply( A180119(n)=(n+1)!\2*n, [0..20]) \\ M. F. Hasler, Apr 10 2018
Formula
a(n) = n*(n+1)!/2. [Simplified by M. F. Hasler, Apr 10 2018]
a(n) = (n+1)! * Sum_{k = 2..n} (1/(k^2+k)), with offset 1. - Gary Detlefs, Sep 15 2011
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*k^(n+1) = (1/(2*x + 1))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x*n + k)^(n+1), for arbitrary x != -1/2. - Peter Bala, Feb 19 2017
From Alois P. Heinz, Apr 19 2017: (Start)
E.g.f.: x/(1-x)^3. (End)
a(n) = A001286(n+1) for n > 0. - M. F. Hasler, Apr 10 2018
Comments