cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A237617 a(n) = n*(n + 1)*(17*n - 14)/6.

Original entry on oeis.org

0, 1, 20, 74, 180, 355, 616, 980, 1464, 2085, 2860, 3806, 4940, 6279, 7840, 9640, 11696, 14025, 16644, 19570, 22820, 26411, 30360, 34684, 39400, 44525, 50076, 56070, 62524, 69455, 76880, 84816, 93280, 102289, 111860, 122010, 132756, 144115, 156104, 168740
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2014

Keywords

Comments

Also 19-gonal (or nonadecagonal) pyramidal numbers.
This sequence is related to A180232 by 2*a(n) = n*A180232(n) - Sum_{i=0..n-1} A180232(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  18;
   3,  36,  35;
   4,  54,  70,  52;
   5,  72, 105, 104,  69;
   6,  90, 140, 156, 138,  86;
   7, 108, 175, 208, 207, 172, 103;
   8, 126, 210, 260, 276, 258, 206, 120;
   9, 144, 245, 312, 345, 344, 309, 240, 137;
  10, 162, 280, 364, 414, 430, 412, 360, 274, 154; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 17*r - 16 and T(r,c) = T(r-1,c) + T(r,r) = (r-c+1) * T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (seventeenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(17*n-14)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(17*n-14)/6: n in [0..40]];
    
  • Magma
    I:=[0,1,20,74]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4) : n in [1..40]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(17*n-14)/6, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(17*n-14)/6, {n, 0, 40}]
    CoefficientList[Series[x(1+16x)/(1-x)^4, {x,0,40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,20,74},40] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    vector(40, n, n*(n-1)*(17*n-31)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(17*n-14)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 16*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(17*i+1); see the generalization in A237616 (Formula field).
E.g.f.: x*(6 + 54*x + 17*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
Showing 1-2 of 2 results.